留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成射流控制鼓包分离流动的数值模拟

陈占军 巴玉龙 王晋军

陈占军, 巴玉龙, 王晋军等 . 合成射流控制鼓包分离流动的数值模拟[J]. 北京航空航天大学学报, 2012, (7): 886-890.
引用本文: 陈占军, 巴玉龙, 王晋军等 . 合成射流控制鼓包分离流动的数值模拟[J]. 北京航空航天大学学报, 2012, (7): 886-890.
Chen Zhanjun, Ba Yulong, Wang Jinjunet al. Numerical investigation on separation control for flow over a bump with synthetic jet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (7): 886-890. (in Chinese)
Citation: Chen Zhanjun, Ba Yulong, Wang Jinjunet al. Numerical investigation on separation control for flow over a bump with synthetic jet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (7): 886-890. (in Chinese)

合成射流控制鼓包分离流动的数值模拟

基金项目: 国家自然科学基金资助项目(50976007)
详细信息
  • 中图分类号: V211.41+2

Numerical investigation on separation control for flow over a bump with synthetic jet

  • 摘要: 为了研究合成射流控制鼓包背风面分离流动的效果,采用商用流体力学软件FLUENT® 6.3求解Reynolds平均Navier-Stokes方程,通过分析鼓包壁面摩擦力系数分布、旋涡脱落结构以及射流孔口附近流动结构,揭示了合成射流对分离点不固定的流动分离的控制机理.结果表明:在分离点前施加合成射流可有效缩小回流区范围,涡脱落被施加的激励"锁定",涡脱落的频率等于合成射流的频率.此外,在本研究所考虑的情况下,动量系数越大,控制效果越好.从时均效果看,当施加最大吹气动量系数为0.369 1%的合成射流时,分离泡长度减小了11%.

     

  • [1] Smith B L,Swift G W.A comparison between synthetic jets and continuous jets[J].Experiments in Fluids,2003,34:467-472
    [2] Zhang P F,Wang J J,Feng L H.Reviews of zero-net-mass-flux jet and its application in separation flow control[J].Science In China E,2008:1315-1344
    [3] Britter R E,Hunt J C R,Richards K J.Air flow over a two-dimensional hill:studies of velocity speed-up,roughness effects and turbulence[J].Quart J Roy Meteorol Soc,1981,107(451):91-110
    [4] Vaccaro J,Vasile J,Amitay M.Active control of inlet ducts.AIAA 2008-6402,2008
    [5] Wellborn S R,Reichert B A,Okiishi T H.An experimental investigation of the flow in a diffusing S-duct.AIAA 1992-3622,1992
    [6] Vaccaro J C,Gressick W,Wen J,et al.An experimental investigation of flow control inside inlet ducts.AIAA 2009-740,2009
    [7] Reneaux J.Overview on drag reduction technologies for civil transport aircraft.ONERA-TP-04-153,2004
    [8] Dandois J,Garnier E.Numerical simulation of active separation control by a synthetic jet[J].Journal of Fluid Mechanics,2007,574:25-58
    [9] Greenblatt D,Paschal K B,Yao C S,et al.Separation control CFD validation test case part 1:baseline and steady suction.AIAA 2004-2220,2004
    [10] Greenblatt D,Paschal K B,Yao C S,et al.Separation control CFD validation test case part 2:zero efflux oscillatory blowing.AIAA 2005-485,2005
    [11] Rumsey C L.Successes and challenges for flow control simulations[J].International Journal of Flow Control,2009,1(1):1-27
    [12] ECCOMAS.Fifth European conference on computational fluid dynamics.Lisbon,Portugal:ECCOMAS,2004.www.maretec.ist.utl.pt/html_files/VV2010.htm
    [13] Dandois J,Garnier E.Numerical simulation of active separation control by a synthetic jet[J].Journal of Fluid Mechanics,2007,574:25-58
    [14] Smith B L,Glezer A.The formation and evolution of synthetic jets[J].Physics of Fluids,1998,10(9):2281-2297
    [15] Zhang P F,Wang J J.Novel signal wave pattern to generate more efficient synthetic jet[J].AIAA Journal,2007,45(5):1058-1065
    [16] Šari'c S,Jakirli'c S,Djugum A,et al.Computational analysis of locally forced flow over a wall-mounted hump at high-Re number[J].International Journal of Heat and Fluid Flow,2006,27(4):707-720
    [17] Hamstra J W,Miller D N,Truax P P,et al.Active inlet flow control technology demonstration[J].Aeronautical Journal,2000,104(1040):473-479
  • 加载中
计量
  • 文章访问数:  3080
  • HTML全文浏览量:  260
  • PDF下载量:  738
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-18
  • 网络出版日期:  2012-07-30

目录

    /

    返回文章
    返回
    常见问答