留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海水干湿循环对初始损伤RC梁力学性能的影响

庞森 刁波 叶英华 王鑫 陈树鑫

庞森, 刁波, 叶英华, 等 . 海水干湿循环对初始损伤RC梁力学性能的影响[J]. 北京航空航天大学学报, 2017, 43(5): 1004-1012. doi: 10.13700/j.bh.1001-5965.2016.0401
引用本文: 庞森, 刁波, 叶英华, 等 . 海水干湿循环对初始损伤RC梁力学性能的影响[J]. 北京航空航天大学学报, 2017, 43(5): 1004-1012. doi: 10.13700/j.bh.1001-5965.2016.0401
PANG Sen, DIAO Bo, YE Yinghua, et al. Effect of seawater wet-dry cycles on mechanical performance of RC beams with initial damage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 1004-1012. doi: 10.13700/j.bh.1001-5965.2016.0401(in Chinese)
Citation: PANG Sen, DIAO Bo, YE Yinghua, et al. Effect of seawater wet-dry cycles on mechanical performance of RC beams with initial damage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 1004-1012. doi: 10.13700/j.bh.1001-5965.2016.0401(in Chinese)

海水干湿循环对初始损伤RC梁力学性能的影响

doi: 10.13700/j.bh.1001-5965.2016.0401
基金项目: 

国家自然科学基金 51578031

亚热带建筑科学国家重点实验室 2016ZA03

详细信息
    作者简介:

    庞森,男,博士研究生。主要研究方向:钢筋混凝土结构分析、混凝土耐久性

    刁波,女,博士,教授,博士生导师。主要研究方向:钢筋混凝土结构分析、混凝土耐久性

    叶英华,男,博士,教授,博士生导师。主要研究方向:钢筋混凝土结构分析

    通讯作者:

    叶英华, E-mail: yhye@buaa.edu.cn

  • 中图分类号: TU502;TU375.1

Effect of seawater wet-dry cycles on mechanical performance of RC beams with initial damage

Funds: 

National Natural Science Foundation of China 51578031

the Open Project of State Key Laboratory of Subtropical Building Science, South China University of Technology 2016ZA03

More Information
  • 摘要:

    沿海环境下的钢筋混凝土(RC)结构处于荷载作用和环境作用同时存在的工作状态且在正常条件下会出现不同程度的荷载损伤。为了在实验室内模拟其工作状态,对RC梁试件施加幅值分别为0.3Pu、0.4Pu、0.5Pu、0.6Pu和0.7Pu(Pu为单调加载梁的极限荷载)的初始荷载造成不同程度的损伤,经历120次海水干湿循环作用后,进行单调加载试验测试剩余力学性能,并对梁试件钻芯取样测试不同位置及深度处混凝土的氯离子含量。试验结果表明,不同程度初始损伤RC梁经历120次海水干湿循环后,其屈服荷载、极限荷载和延性均随初始荷载幅值的增加而降低;与无损伤梁试件相比,当初始损伤荷载为0.4Pu时,梁试件的屈服荷载和极限荷载降幅分别为10.4%和7.9%,随着初始荷载增大,屈服荷载和极限荷载快速下降,当初始损伤荷载为0.7Pu时,屈服荷载和极限荷载降幅分别达33.7%和32.4%。氯离子含量测试结果表明,梁试件混凝土受拉区氯离子含量均大于受压区氯离子含量;当初始损伤荷载小于0.5Pu时,受拉钢筋表面混凝土的氯离子含量差别不大且小于0.1%,当初始损伤荷载为0.7Pu时, 钢筋表面氯离子含量最大达到0.14%。可见,初始荷载损伤与海水干湿循环综合作用对RC梁力学性能及耐久性劣化影响显著。

     

  • 图 1  钢筋混凝土梁试件几何尺寸和配筋

    Figure 1.  Geometry size and reinforcement of reinforced concrete beam specimen

    图 2  四点弯曲加载示意图

    Figure 2.  Schematic diagram of 4-point bending load

    图 3  海水干湿循环自动喷淋装置示意图

    Figure 3.  Schematic diagram of automatic sprinklerfor seawater wet-dry cycle

    图 4  混凝土氯离子含量取样位置示意图

    Figure 4.  Schematic diagram of sampling position of chloride ion content in concrete

    图 5  梁试件B-0.4裂缝趋势和测点位置示意图

    Figure 5.  Schematic diagram of cracking tendency and test point position for beam specimen B-0.4

    图 6  梁试件裂缝宽度统计箱线图

    Figure 6.  Boxplot of crack width of beam specimen

    图 7  干湿循环前后3种典型的裂缝宽度变化

    Figure 7.  Three typical changes of crack width before and after wet-dry cycles

    图 8  梁试件的荷载-挠度曲线

    Figure 8.  Load-deflection curves of beam specimens

    图 9  极限荷载、屈服荷载及位移延性系数随初始损伤荷载的变化

    Figure 9.  Variation of ultimate load, yield load and displacement ductility coefficient with initial damage load

    图 10  干湿循环前后梁试件抗弯刚度变化

    Figure 10.  Variation of bending rigidity of specimens before and after wet-dry cycles

    图 11  B-0.3梁试件氯离子含量随深度变化

    Figure 11.  Variation of chloride ion content with depth of beam specimen B-0.3

    图 12  B-0.5梁试件氯离子含量随深度变化

    Figure 12.  Variation of chloride ion content with depth of beam specimen B-0.5

    图 13  B-0.7梁试件氯离子含量随深度变化

    Figure 13.  Variation of chloride ion content with depth of beam specimen B-0.7

    图 14  钢筋表面氯离子含量和混凝土保护层总氯离子含量与初始损伤荷载幅值

    Figure 14.  Chloride ion content at reinforcement surface and total chloride ion content in concrete cover with initial damage load amplitudes

    图 15  氯离子含量拟合曲线

    Figure 15.  Fitting curves of chloride ion content

    表  1  梁试件初始损伤加载幅值和试验环境

    Table  1.   Beam specimen initial damage load amplitude and test environment

      编号 荷载幅值 试验环境
      B-0 0 干湿循环
      B-0.3 0.3 Pu 干湿循环
      B-0.4 0.4 Pu 干湿循环
      B-0.5 0.5 Pu 干湿循环
      B-0.6 0.6 Pu 干湿循环
      B-0.7 0.7 Pu 干湿循环
      B-Ref 0 标准养护
    下载: 导出CSV

    表  2  干湿循环前后梁试件裂缝宽度变化统计

    Table  2.   Variation statistics of crack width of beam specimen before and after wet-dry cycles

    编号 最大裂缝宽度/mm 干湿循环前裂缝宽度/mm 总测点数量 干湿循环后裂缝变化测点数量
    完全愈合 部分愈合 基本稳定
    B-0.3 0.08 < 0.1 7 5 2 0
    0.1~0.2 0 0 0 0
    ≥0.2 0 0 0 0
    B-0.4 0.19 < 0.1 15 9 4 2
    0.1~0.2 15 2 3 10
    ≥0.2 0 0 0 0
    B-0.5 0.34 < 0.1 15 12 2 1
    0.1~0.2 17 1 4 12
    ≥0.2 4 0 0 4
    B-0.6 0.63 < 0.1 26 15 6 5
    0.1~0.2 20 2 3 15
    ≥0.2 8 0 0 8
    B-0.7 1.16 < 0.1 22 15 5 2
    0.1~0.2 14 0 1 13
    ≥0.2 9 0 0 9
    下载: 导出CSV

    表  3  梁试件单调加载试验结果

    Table  3.   Testing results of beam specimen under monotonic loading

    编号 Py/kN δy/mm Pm/kN δm/mm δu/mm δu/δy
    B-0 41.09 2.06 50.50 17.37 37.82 18.4
    B-0.3 38.05 2.85 47.48 26.31 33.11 11.6
    B-0.4 36.81 2.75 46.51 31.23 36.25 13.2
    B-0.5 33.03 2.56 41.99 20.56 26.89 10.5
    B-0.6 27.32 2.27 38.79 17.54 17.81 7.8
    B-0.7 27.25 2.33 34.14 18.86 25.02 10.7
    下载: 导出CSV

    表  4  梁试件屈服荷载和极限荷载降幅

    Table  4.   Decreasing amplitude of yield load and ultimate load of specimens

    编号 ΔPy/% ΔPm/% Δμ/%
    B-0.3 7.4 6.0 37.0
    B-0.4 10.4 7.9 28.3
    B-0.5 19.6 16.9 42.9
    B-0.6 33.5 23.2 57.6
    B-0.7 33.7 32.4 41.8
    下载: 导出CSV

    表  5  梁试件抗弯刚度变化和降幅

    Table  5.   Variation of bending rigidity of specimens and decreasing amplitude

    编号 干湿循环前抗弯刚度/(kN·m2) 干湿循环后抗弯刚度/(kN·m2) 降幅/%
    B-0.3 32.63 31.96 2.1
    B-0.4 33.82 32.14 4.9
    B-0.5 27.43 25.18 8.2
    B-0.6 28.88 24.36 15.7
    B-0.7 30.34 20.58 32.2
    B-0 41.03
    下载: 导出CSV

    表  6  氯离子含量分布函数的参数拟合结果

    Table  6.   Fitting results of parameters of chloride ion content distribution function

    编号 裂缝区 非裂缝区
    Cs/% D/(mm2·d-1) Cs/% D/(mm2·d-1)
    B-0.3 2.05 2.10 1.75 1.65 1.17
    B-0.4 2.09 1.62 1.49 1.67 1.40
    B-0.5 3.65 1.31 1.84 2.19 1.98
    B-0.6 2.84 1.61 1.37 2.23 2.07
    B-0.7 3.16 1.39 1.25 2.59 2.53
    下载: 导出CSV
  • [1] ALDEA C M, SHAH S P, KARR A.Permeability of cracked concrete[J].Materials and Structures, 1999, 32(5):370-376. doi: 10.1007/BF02479629
    [2] DJERBI A, BONNET S, KHELIDJ A, et al.Influence of traversing crack on chloride diffusion into concrete[J].Cement and Concrete Research, 2008, 38(6):877-883. doi: 10.1016/j.cemconres.2007.10.007
    [3] JANG S Y, KIM B S, OH B H.Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests[J].Cement and Concrete Research, 2011, 41(1):9-19. doi: 10.1016/j.cemconres.2010.08.018
    [4] SAHMARAN M. Effect of flexure induced transverse crack and self-healing on chloride diffusivity of reinforced mortar[J].Journal of Materials Science, 2007, 42(22): 9131-9136. doi: 10.1007/s10853-007-1932-z
    [5] BENTZ D P, GARBOCZI E J, LU Y, et al.Modeling of the influence of transverse cracking on chloride penetration into concrete[J].Cement and Concrete Composites, 2013, 38(2):65-74. http://www.sciencedirect.com/science/article/pii/S095894651300022X
    [6] RODRIGUEZ O, HOOTON R.Influence of cracks on chloride ingress into concrete[J].ACI Materials Journal, 2003, 100(2): 120-126. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=12551
    [7] LI C Q.Initiation of chloride-induced reinforcement corrosion in concrete structural members-prediction[J].ACI Structural Journal, 2002, 99(2):133-141. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=10293
    [8] LI C Q.Initiation of chloride-induced reinforcement corrosion in concrete structural members-experimentation[J].ACI Structural Journal, 2001, 98(4):502-510. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=10293
    [9] WIN P P, WATANABE M, MACHIDA A.Penetration profile of chloride ion in cracked reinforced concrete[J].Cement and Concrete Research, 2004, 34(7):1073-1079. doi: 10.1016/j.cemconres.2003.11.020
    [10] 陆春华, 金伟良, 延永东.氯盐干湿环境下受弯横向裂缝对钢筋混凝土耐久性影响[J].海洋工程, 2012, 30(1):131-136. http://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201201018.htm

    LU C H, JIN W L, YAN Y D.Influence of transverse cracks on durability of RC member under chloridedry and wet cycles[J].The Ocean Engineering, 2012, 30(1):131-136(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201201018.htm
    [11] 刁波, 孙洋.混合侵蚀与冻融交替作用下持载钢筋混凝土偏压构件试验[J].建筑结构学报, 2009(增刊2):298-303. http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2009S2051.htm

    DIAO B, SUN Y.Experiments of reinforced concrete columns with eccentric compressive persistent loading under alternative actions of a mixed aggressive solution and freeze-thaw cycles[J].Journal of Building Structures, 2009(S2):298-303(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2009S2051.htm
    [12] 沈孛, 叶英华, 刁波, 等.海水干湿循环对带裂缝钢筋混凝土柱力学性能及氯离子含量的影响[J].建筑结构学报, 2014(增刊1):69-74. http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2014S1010.htm

    SHEN B, YE Y H, DIAO B, et al.Effects of seawater wet-dry cycles on performance and chloride content of RC columns with different initial cracks[J].Journal of Building Structures, 2014(S1):69-74(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2014S1010.htm
    [13] 耿娇, 刁波, 陈圣刚.冻融与侵蚀作用下引气混凝土劣化微观机理[J].北京航空航天大学学报, 2013, 39(10):1392-1396. http://bhxb.buaa.edu.cn/CN/abstract/abstract12759.shtml

    GENG J, DIAO B, CHEN S G.Degradation mechanism of air-entrained concrete under alternative actions of freeze-thaw cycles and seawater immersion[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10):1392-1396(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12759.shtml
    [14] 中国钢铁工业协会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T228. 1—2010[S]. 北京: 中国国家标准化管理委员会, 2010.

    China Iron and Steel Association.Metallic materials—Tensile testing—Part 1: Method of test at room temperature:GB/T228.1—2010[S].Beijing:Standardization Administration of the People's Republic of China, 2010(in Chinese).
    [15] 中国建筑科学研究院. 普通混凝土力学性能试验方法标准: GB/T50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    China Academy of Building Research.Standard for test method of mechanical properties on ordinary concrete:GB/T50081—2002[S].Beijing: China Architecture & Building Press, 2003(in Chinese).
    [16] 中国建筑科学研究院. 混凝土中氯离子含量检测技术规程: JGJ/T322—2013[S]. 北京: 中国建筑工业出版社, 2013.

    China Academy of Building Research.Technical specification for test of chloride ion content in concrete:JGJ/T322—2013[S].Beijing: China Architecture & Building Press, 2013(in Chinese).
    [17] 中国建筑科学研究院. 钢筋混凝土结构设计规范: GB50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    China Academy of Building Research.Code for design of concrete structures:GB50010—2010[S].Beijing: China Architecture & Building Press, 2010(in Chinese).
    [18] 吴庆, 袁迎曙.锈蚀钢筋力学性能退化规律试验研究[J].土木工程学报, 2008, 41(12):42-47. doi: 10.3321/j.issn:1000-131X.2008.12.007

    WU Q, YUAN Y S.Experimental study on the deterioration of mechanical properties of corroded steel bars[J].China Civil Engineering Journal, 2008, 41(12):42-47(in Chinese). doi: 10.3321/j.issn:1000-131X.2008.12.007
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  631
  • HTML全文浏览量:  181
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12
  • 录用日期:  2016-07-01
  • 网络出版日期:  2017-05-20

目录

    /

    返回文章
    返回
    常见问答