留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超流体量子干涉陀螺热驱动方式建模与分析

赵玉龙 沈怀荣 任元

赵玉龙, 沈怀荣, 任元等 . 超流体量子干涉陀螺热驱动方式建模与分析[J]. 北京航空航天大学学报, 2017, 43(12): 2473-2479. doi: 10.13700/j.bh.1001-5965.2016.0927
引用本文: 赵玉龙, 沈怀荣, 任元等 . 超流体量子干涉陀螺热驱动方式建模与分析[J]. 北京航空航天大学学报, 2017, 43(12): 2473-2479. doi: 10.13700/j.bh.1001-5965.2016.0927
ZHAO Yulong, SHEN Huairong, REN Yuanet al. Modeling and analysis of superfluid quantum interference gyro driven by heat[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2473-2479. doi: 10.13700/j.bh.1001-5965.2016.0927(in Chinese)
Citation: ZHAO Yulong, SHEN Huairong, REN Yuanet al. Modeling and analysis of superfluid quantum interference gyro driven by heat[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2473-2479. doi: 10.13700/j.bh.1001-5965.2016.0927(in Chinese)

超流体量子干涉陀螺热驱动方式建模与分析

doi: 10.13700/j.bh.1001-5965.2016.0927
基金项目: 

国家自然科学基金 51475472

国家“863”计划 2015AA8018038C

详细信息
    作者简介:

    赵玉龙 男, 博士研究生。主要研究方向:先进惯性测量与控制技术

    任元 男, 博士, 副教授。主要研究方向:先进惯性测量与控制技术

    通讯作者:

    任元,E-mail: renyuan_823@aliyun.com

  • 中图分类号: V448.2

Modeling and analysis of superfluid quantum interference gyro driven by heat

Funds: 

National Natural Science Foundation of China 51475472

National High-tech Research and Development Program of China 2015AA8018038C

More Information
  • 摘要:

    超流体量子干涉陀螺采用热驱动方式时,陀螺内部流量、压强、温度多参数变化及相互影响,致使加热电阻功率与超流体在弱连接处形成的约瑟夫森频率关系复杂。为了保证陀螺持续稳定的工作在约瑟夫森频率下,必须对陀螺内部约瑟夫森频率的形成机理进行精确建模。针对超流体陀螺热驱动工作方式,首先,从陀螺内腔流体的熵变角度出发,建立了陀螺的温度变化、压强变化和输入-输出模型;然后,仿真分析了在恒定加热电阻功率和线性时变加热电阻功率时超流体陀螺温度和压强随时间的变化特性,对比不同加热电阻功率对陀螺的化学势差和约瑟夫森频率的影响,得出加热电阻功率的工作区间以及约瑟夫森频率的范围;最后,探索分析了约瑟夫森频率对超流体陀螺输出和陀螺精度的影响。

     

  • 图 1  超流体量子干涉陀螺结构

    Figure 1.  Structure of superfluid quantum interference gyro

    图 2  超流体陀螺压强差曲线

    Figure 2.  Pressure difference curves of superfluid gyro

    图 3  线性时变功率时超流体陀螺温度差曲线

    Figure 3.  Temperature difference curves of superfluid gyro with linear time varing power

    图 4  线性时变功率时超流体陀螺压强差曲线

    Figure 4.  Pressure difference curve of superfluid gyro with linear time varing power

    图 5  线性时变功率时超流体陀螺温度差曲线

    Figure 5.  Temperature difference curve of superfluid gyrowith linear time varing power

    图 6  化学势差变化曲线

    Figure 6.  Change curves of chemical potential difference

    图 7  超流体陀螺约瑟夫森频率曲线

    Figure 7.  Josephson frequency curves of superfluid gyro

    图 8  超流体陀螺流量曲线

    Figure 8.  Flow curves of superfluid gyro

    图 9  超流体陀螺薄膜位移曲线

    Figure 9.  Film displacement curves of superfluid gyro

    图 10  超流体陀螺精度曲面

    Figure 10.  Precision surface of superfluid gyro

  • [1] ONNES H K.The condensation of helium[J].Nature, 1908, 77(3):559. http://www.nature.com/nature/journal/v77/n2007/abs/077559b0.html
    [2] ZAKHARENKO A A.Studying creation of bulk elementary excitation by heaters in superfluid helium-Ⅱ at low temperatures[J].Journal of Zhejiang University-Science A, 2007, 8(7):1065-1076. doi: 10.1631/jzus.2007.A1065
    [3] SUKHATME K, MUKHARSKY Y, CHUI T, et al.Observation of the ideal Josephson effect in superfluid 4He[J].Nature, 2001, 411(6835):280-283. doi: 10.1038/35077024
    [4] PACKARD R E.The role of the Josephson-Anderson equation in superfluid helium[J].Reviews of Modern Physics, 1998, 70(2):641-651. doi: 10.1103/RevModPhys.70.641
    [5] GOLOVASHKIN A I, ZHERIKHINA L N, TSKHOVREBOV A M, et al.Ordinary SQUID interferometers and superfluid helium matter wave interferometers:The role of quantum fluctuations[J].Journal of Experimental and Theoretical Physics, 2010, 111(2):332-339. doi: 10.1134/S1063776110080285
    [6] SCHLEICH W P, RANADE K S, ANTON C, et al.Quantum technology:From research to application[J].Applied Physics B, 2016, 122(5):122-130. doi: 10.1007/s00340-016-6395-y
    [7] SIMMOND R W.Josephson weak link quantum interference in superfluid 3He[D].Berkeley:University of California, 2002:10-20. https://www.researchgate.net/publication/234523429_Josephson_weak_links_and_quantum_interference_in_superfluid_helium-3
    [8] SIMMOND R W, MARCHENKOW A, HOSKINSON E, et al.Quantum interference of superfluid 3He[J].Nature, 2001, 412(6842):55-58. doi: 10.1038/35083518
    [9] HOSKINSON E.Superfluid 4He weak links[D].Berkeley:University of California, 2005:45-58. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.7628&rep=rep1&type=pdf
    [10] HAKONEN A P, VAROQUAUX E.Detection of the rotation of the earth with a superfluid gyrometer[J].Physical Review Letters, 1997, 78(19):3602-3605. doi: 10.1103/PhysRevLett.78.3602
    [11] LI J, SHIELDS S.Superconvergence analysis of Yee scheme for metamaterial Maxwell's equations on non-uniform rectangu[J].Numerische Mathematik, 2016, 134(4):741-781. doi: 10.1007/s00211-015-0788-4
    [12] WANG M, SI T, LUO X.Experimental study on the interaction of planar shock wave with polygonal helium cylinders[J].Shock Waves, 2015, 25(4):347-355. doi: 10.1007/s00193-014-0528-1
    [13] KHORDAD R.Thermodynamical properties of triangular quantum wires:Entropy, specific heat, and internal energy[J].Continuum Mechanics and Thermodynamics, 2016, 28(4):947-956. doi: 10.1007/s00161-015-0429-2
    [14] SATO Y, ADITYA J, PACKARD R.Flux locking a superfluid interferometer[J].Applied Physics Letters, 2007, 91(7):1-3. https://www.researchgate.net/publication/1761524_Flux_locking_a...
    [15] SATO Y.Experiments using 4He weak link[D].Berkeley:University of California, 2007:51-58. http://gradworks.umi.com/33/06/3306328.html
    [16] SHIROKOFF D, NAVE J C.A sharp-interface active penalty method for the incompressible Navier-Stokes equations[J].Continuum Mechanics and Thermodynamics, 2015, 62(1):53-77. doi: 10.1007/s10915-014-9849-6.pdf
    [17] NARAYANA S, SATO Y.Superfluid quantum interference in multiple-turn reciprocal geometry[J].Physical Review Letters, 2011, 106(6):255301-1-255301-4. http://www.ncbi.nlm.nih.gov/pubmed/21770649
    [18] MUKHARSKY Y, AVENEL O, VAROQUAUX E.Simulation of a 4He superfluid gyrometer with large sensing area[J].Journal of Low Temperature Physics, 1998, 113(5):915-920. https://www.researchgate.net/profile/Eric_Varoquaux/2?page=2&...
    [19] ADHIKARI S K.Josephson oscillation of a superfluid Fermi gas[J].The European Physical Journal D, 2008, 47(3):413-419. doi: 10.1140/epjd/e2008-00044-0
    [20] HAKONEN A P, VAROQUAUX E.Detection of the rotation of the earth with a superfluid gyrometer[J].Physical Review Letters, 1997, 78(19):3602-3605. doi: 10.1103/PhysRevLett.78.3602
    [21] HOSKINSON E, PACKARD R E.Thermally driven Josephson oscillations in superfluid 4He[J].Physical Review Letters, 2005, 94(15):155303-1-155303-4. doi: 10.1103/PhysRevLett.94.155303
  • 加载中
图(10)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  53
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-08
  • 录用日期:  2017-03-10
  • 网络出版日期:  2017-12-20

目录

    /

    返回文章
    返回
    常见问答