留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑分布参数依赖的风险混合不确定性分析方法

段永胜 赵继广 陈鹏 崔豹 吕潇磊

段永胜, 赵继广, 陈鹏, 等 . 考虑分布参数依赖的风险混合不确定性分析方法[J]. 北京航空航天大学学报, 2017, 43(12): 2439-2448. doi: 10.13700/j.bh.1001-5965.2016.0935
引用本文: 段永胜, 赵继广, 陈鹏, 等 . 考虑分布参数依赖的风险混合不确定性分析方法[J]. 北京航空航天大学学报, 2017, 43(12): 2439-2448. doi: 10.13700/j.bh.1001-5965.2016.0935
DUAN Yongsheng, ZHAO Jiguang, CHEN Peng, et al. Analysis method for hybrid uncertainty of risk considering distribution parameters dependency[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2439-2448. doi: 10.13700/j.bh.1001-5965.2016.0935(in Chinese)
Citation: DUAN Yongsheng, ZHAO Jiguang, CHEN Peng, et al. Analysis method for hybrid uncertainty of risk considering distribution parameters dependency[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2439-2448. doi: 10.13700/j.bh.1001-5965.2016.0935(in Chinese)

考虑分布参数依赖的风险混合不确定性分析方法

doi: 10.13700/j.bh.1001-5965.2016.0935
详细信息
    作者简介:

    段永胜 男, 博士研究生。主要研究方向:航天任务分析与设计

    赵继广 男, 博士, 教授, 博士生导师。主要研究方向:航天任务总体

    通讯作者:

    赵继广, E-mail: jiguang_zhao@aliyun.com

  • 中图分类号: V511+.6

Analysis method for hybrid uncertainty of risk considering distribution parameters dependency

More Information
  • 摘要:

    在定量化风险评估中,针对变量分布参数存在依赖时的混合不确定性传播问题,提出一种考虑分布参数完全依赖、部分依赖以及独立传播情形的双层混合不确定性刻画与传播框架,内外层分布参数不确定性分别用概率分布与可能性分布刻画,采用蒙特卡罗模拟法与模糊扩展原则相结合的数值求解方法。针对认知不确定性分布参数依赖性,构建了统一的认知不确定性分布参数依赖性模型,并给出依赖性系数的概念。为实现认知不确定性分布参数独立性采样,设计了基于D-S证据理论与随机集相结合的不确定性传播算法,相比于概率刻画下的双层蒙特卡罗方法,计算代价有效降低。以某型氢氧发动机贮箱共底漏气率为算例,验证本文方法的有效性与可行性。

     

  • 图 1  D-S证据理论信度区间关系

    Figure 1.  Relationship between belief intervals of D-S evidence theory

    图 2  三角模糊分布对应的α-截集区间

    Figure 2.  α-cut interval corresponding to triangular fuzzy distribution

    图 3  认知不确定性分布参数完全负依赖模型

    Figure 3.  Total negative dependency model of epistemic uncertainty distribution parameter

    图 4  参数非独立时的混合不确定性传播流程

    Figure 4.  Hybrid uncertainty propagation flowchart under independent distribution parameters

    图 5  三角模糊分布函数μ=θj, 1α-截集

    Figure 5.  α-cut of triangular fuzzy distribution function of μ=θj, 1

    图 6  均值为[μα, μα]的Yj的累计分布函数曲线

    Figure 6.  Curves of cumulative distribution function of Yj between mean value [μα, μα]

    图 7  参数独立时的混合不确定性传播流程

    Figure 7.  Hybrid uncertainty propagation flowchart under dependent distribution parameters

    图 8  可能性分布到信度空间的转换

    Figure 8.  Transformation from possibility distribution to belief space

    图 9  液氧液氢贮箱共底结构

    Figure 9.  Co-bottom tank structure of liquid oxygen and liquid hydrogen

    图 10  认知不确定性分布参数独立时混合不确定性传播与双层蒙特卡罗不确定性传播曲线对比

    Figure 10.  Compared curves of hybrid uncertainty propagation and two-level Monte Carlo uncertainty propagation with epistemic uncertainty distribution parameters independence

    图 11  认知不确定性分布参数依赖性、独立性的不确定性传播结果曲线对比

    Figure 11.  Compared curves of uncertainty propagation with epistemic uncertainty distribution parameters dependency and independency

    图 12  认知不确定性分布参数完全正、负依赖时的不确定性传播结果曲线对比

    Figure 12.  Compared curves of uncertainty propagation of epistemic uncertainty distribution parameters with total dependence and independence

    图 13  共底漏气率不确定性结果

    Figure 13.  Uncertainty of co-bottom gas leakage rate

    表  1  认知不确定性分布参数

    Table  1.   Parameter distributions of epistemic uncertainty

    参数 数值
    μP1 (6 500, 7 000, 7 500)
    σP1 100
    μP2 (3 300, 3 500, 3 400)
    σP2 100
    μV (0.49, 0.50, 0.51)
    σV (0.004 5, 0.005 0, 0.005 5)
    μT1 (0, 10, 5)
    σT1 (0.05, 0, 0.1)
    μT2 (43 100, 43 200, 43 300)
    σT2 (0, 100, 200)
    下载: 导出CSV

    表  2  认知不确定性分布参数依赖性

    Table  2.   Dependency of parameter distributions of epistemic uncertainty

    参数1 参数2 k
    μP1 μP2 -0.5
    σP1 σP2 0.3
    μT1 μT2 -1
    σT1 σT2 0.7
    下载: 导出CSV

    表  3  各种不确定性传播方法计算代价对比

    Table  3.   Comparison of calculation costs of different uncertainty propagation methods

    方法 NL1 NL2 tCPU/s
    Mpr 3×105 1×105 15.3
    Mpo 2×102 1×103 7.5
    本文方法 5×101 1×103 3.5
    下载: 导出CSV
  • [1] ABDELLAOUI M, LUCE R D, MACHINA M J, et al.Uncertainty and risk:Mental, formal, experimental representations[M/OL].Berlin:Springer-Verlag, 2007:5-98[2017-09-30].http://www.springer.com/us/book/9783540489344.
    [2] HELTON J C, JOHNSON J D, OBERKAMPF W L, et al.Representation of analysis results involving aleatory and epistemic uncertainty[J].International Journal of General Systems, 2010, 39(6):605-646. doi: 10.1080/03081079.2010.486664
    [3] HELTON J C.Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty[J].Journal of Statistical Computation and Simulation, 1997, 57(1-4):3-76. doi: 10.1080/00949659708811803
    [4] GUYONNET D, BOURGINE B, DUBOIS D, et al.Hybrid approach for addressing uncertainty in risk assessments[J].Journal of Environmental Engineering, 2003, 129(1):68-78. doi: 10.1061/(ASCE)0733-9372(2003)129:1(68)
    [5] MOENS D, HANSS M.Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics:Recent advances[J].Finite Elements in Analysis & Design, 2011, 47(1):4-16. https://www.sciencedirect.com/science/article/pii/S0168874X10001149
    [6] ROHMER J, BAUDRIT C.The use of the possibility theory to investigate the epistemic uncertainties within scenario-based earthquake risk assessments[J].Natural Hazards, 2011, 56(3):613-632. doi: 10.1007/s11069-010-9578-6
    [7] AGARWAL H, RENAUD J E, PRESTON E L, et al.Uncertainty quantification using evidence theory in multidisciplinary design optimization[J].Reliability Engineering & System Safety, 2004, 85(1):281-294. https://www.sciencedirect.com/science/article/pii/S0951832004000663
    [8] SHAH H, HOSDER S, WINTER T.Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions[J].Reliability Engineering & System Safety, 2015, 138:59-72. http://www.sciencedirect.com/science/article/pii/S0951832015000228
    [9] RAO K D, GOPIKA V, RAO V V S S, et al.Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment[J].Reliability Engineering & System Safety, 2009, 94(4):872-883. http://www.sciencedirect.com/science/article/pii/S0951832008002354
    [10] BARALDI P, ZIO E.A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis[J].Risk Analysis, 2008, 28(5):1309-1326. doi: 10.1111/risk.2008.28.issue-5
    [11] BAUDRIT C, DUBOIS D, GUYONNET D.Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment[J].IEEE Transactions on Fuzzy Systems, 2006, 14(5):593-608. doi: 10.1109/TFUZZ.2006.876720
    [12] DEMPSTER A P.Upper and lower probabilities induced by a multivalued mapping[J].Annals of Mathematical Statistics, 1967, 38(2):325-339. doi: 10.1214/aoms/1177698950
    [13] SHAFER G.A mathematical theory of evidence[J].Technometrics, 1978, 20(1):579-601. https://econpapers.repec.org/paper/icrwpicer/03-2001.htm
    [14] KAY R U.Fundamentals of the Dempster-Shafer theory and its applications to system safety and reliability modelling[J].Reliability:Theory & Applications, 2007, 2:173-185. http://www.rakowsky.eu/pdf/P-NB_ppt.pdf
    [15] GUAN J W, BELL D A.Evidence theory and its applications.Vol.2[M].New York:Elsevier Science, 1991:37-53.
    [16] SADIQ R, NAJJARAN H, KLEINER Y.Investigating evidential reasoning for the interpretation of microbial water quality in a distribution network[J].Stochastic Environmental Research and Risk Assessment, 2006, 21(1):63-73. doi: 10.1007/s00477-006-0044-7
    [17] GRABISCH M.Dempster-Shafer and possibility theory[M].Berlin:Springer, 2016:377-437.
    [18] DUBOIS D, NGUYEN H T, PRADE H.Possibility theory, probability and fuzzy sets misunderstandings, bridges and gaps[M]//DUBOIS D, PRADE H.Fundamentals of fuzzy sets.Berlin:Springer, 2000:343-438. doi: 10.1007/978-1-4615-4429-6_8
    [19] ROSS T J.Fuzzy logic with engineering applications[M].New York:John Wiley & Sons, 2009:408-433.
    [20] DUBOIS D.Fuzzy sets and systems:Theory and applications[M].Orlando:Academic Press, 1980:9-146.
    [21] DUBOIS D.Possibility theory and statistical reasoning[J].Computational Statistics & Data Analysis, 2006, 51(1):47-69. https://www.sciencedirect.com/science/article/pii/S0167947306001149
    [22] PEDRONI N, ZIO E.Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[J].International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 2012, 20(4):509-557. doi: 10.1142/S0218488512500250
    [23] 王荣宗, 孙天辉.低温贮箱共底真空性能分析及测试[J].导弹与航天运载技术, 2002(2):47-51. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ddyh200202009&dbname=CJFD&dbcode=CJFQ

    WANG R Z, SUN T H.Analysis and measure of vacuum character for the co-bulkhead of the cryogenic tanks[J].Missiles and Space Vehicles, 2002(2):47-51(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ddyh200202009&dbname=CJFD&dbcode=CJFQ
    [24] VOSE D.Risk analysis:A quantitative guide[M].New York:John Wiley & Sons, 2007:52-158.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  610
  • HTML全文浏览量:  97
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-12
  • 录用日期:  2017-03-10
  • 网络出版日期:  2017-12-20

目录

    /

    返回文章
    返回
    常见问答