留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间混联机构的人体肩部骨骼运动模型

聂超 宋智斌 戴建生

聂超, 宋智斌, 戴建生等 . 基于空间混联机构的人体肩部骨骼运动模型[J]. 北京航空航天大学学报, 2018, 44(1): 196-204. doi: 10.13700/j.bh.1001-5965.2016.0941
引用本文: 聂超, 宋智斌, 戴建生等 . 基于空间混联机构的人体肩部骨骼运动模型[J]. 北京航空航天大学学报, 2018, 44(1): 196-204. doi: 10.13700/j.bh.1001-5965.2016.0941
NIE Chao, SONG Zhibin, DAI Jianshenget al. A shoulder skeletal kinematic model based on spatial hybrid mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 196-204. doi: 10.13700/j.bh.1001-5965.2016.0941(in Chinese)
Citation: NIE Chao, SONG Zhibin, DAI Jianshenget al. A shoulder skeletal kinematic model based on spatial hybrid mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 196-204. doi: 10.13700/j.bh.1001-5965.2016.0941(in Chinese)

基于空间混联机构的人体肩部骨骼运动模型

doi: 10.13700/j.bh.1001-5965.2016.0941
基金项目: 

国家自然科学基金 51475322

国家自然科学基金 51535008

详细信息
    作者简介:

    聂超, 男, 硕士研究生。主要研究方向:肩部骨骼肌肉模型、康复训练策略

    宋智斌, 男, 博士, 讲师。主要研究方向:上肢康复机器人、人机交互、生体电信号处理等

    戴建生, 男, 博士, 教授, 博士生导师。主要研究方向:变胞机构、可重构机构与可重构机器人、旋量代数与旋量系理论、Origami机构、机器人与跨学科研究等

    通讯作者:

    宋智斌, E-mail: songzhibin@tju.edu.cn

  • 中图分类号: TH112;Q66

A shoulder skeletal kinematic model based on spatial hybrid mechanism

Funds: 

National Natural Science Foundation of China 51475322

National Natural Science Foundation of China 51535008

  • 摘要:

    为了描述人体肩部骨骼系统的运动特征,将肩胛骨与胸廓的相对运动关系定义为类似于圆柱-平面副的运动约束,建立了肩部骨骼系统的空间混联机构模型。首先定义了肩部复合体各关节的类型,并完成了肩带部分和整个肩部机构的自由度分析。然后通过定义附着于各骨骼上的局部坐标系,以齐次坐标变换矩阵和矢量法建立机构的运动分析方程,求得其关节位置的闭合解。最后为了验证该模型,以获得自肩部运动实验的骨骼姿态数据反向驱动该机构模型,从而得到肩胛骨姿态的计算结果,并与测量结果进行对比。结果表明:该机构模型能够反映肩部骨骼的运动约束关系。同时,该模型可以通过缩放处理从而用于适应不同个体的骨骼几何特征。

     

  • 图 1  肩关节机构模型简图

    Figure 1.  Schematic of shoulder joint mechanism model

    图 2  肩部骨骼机构坐标系定义

    Figure 2.  Definition of related reference frames of shoulder skeleton mechanism

    图 3  cd在肩胛骨系中的位置

    Figure 3.  Position of points c and d in scapula frame

    图 4  肩胛-胸廓椭圆约束示意图

    Figure 4.  Schematic of the constraint between scapula and thorax ellipsoid

    图 5  标记群的布置[12]

    Figure 5.  Placement of marker clusters[12]

    图 6  ISB标准中的骨骼标记点与局部坐标系

    Figure 6.  Skeletal landmarks and local frames defined in ISB standard

    图 7  锁骨的姿态(FLEX)

    Figure 7.  Posture of clavicle (FLEX)

    图 8  用于机构位置分析的输入关节变量θ1、θ2 (FLEX)

    Figure 8.  Joint variables θ1, θ2 inputted for mechanism position analysis (FLEX)

    图 9  肩胛骨下角AI在椭球系S3中的位置(FLEX)

    Figure 9.  Position of angulus inferior AI described in ellipsoid frame S3(FLEX)

    图 10  AI投影于胸廓椭圆表面示意图

    Figure 10.  Schematic of point AI projected on thorax elliptical surface

    图 11  关节变量ϕd(FLEX)

    Figure 11.  Joint variable ϕd (FLEX)

    图 12  肩胛骨相对于胸廓的运动姿态(FLEX、ABD、SCAP)

    Figure 12.  Movement posture of scapula with respect to thorax (FLEX, ABD, SCAP)

    图 13  肩胛骨姿态的模型预测值与实验测量值平均偏差

    Figure 13.  Average deviations between scapula postures obtained from model prediction and experiment measurement

    表  1  标准模型的各构件尺寸参数

    Table  1.   Size parameters of each link in generic model

    参数 l1 /mm l2 /mm l3 /mm l22 /mm l4 /mm γ /(°)
    数值 182.5 129.1 185.9 117.6 301.6 38.8
    下载: 导出CSV

    表  2  标准模型中胸廓椭球的几何尺寸

    Table  2.   Size parameters of thorax ellipsoid in generic modelmm

    几何尺寸 c1 c2 c3 O点位置0pO e点位置2pe
    数值 144.6 95.6 211.7 [0-62.1
    -152.1 1]T
    [28.1-43.9
    -164.5 1]T
    下载: 导出CSV

    表  3  实验对象的骨骼特征尺寸参数

    Table  3.   Skeletal size parameters of experimental subjectmm

    骨骼标记点 标准模型 实验对象
    IJ (0, 0, 0) (0, 0, 0)
    PX (31.9, -132.7, -9.8) (56.0, -163.0, -2.4)
    C7 (-124.2, 54.1, 0) (-123.1, 80.7, -4.7)
    T8 (-156.61, -171.5, 0) (-179.1, -133.2, 11.2)
    AA (-105.6, 7.5, 182.6) (-73.5, 9.3, 205.1)
    TS (-156.0, -11.7, 75.0) (-136.3, 5.1, 121.8)
    AI (-156.7, -126.2, 101.9) (-141.6, -126.5, 116.2)
    AC (-71.8, 26.6, 165.1) (-37.0, 40.4, 167.2)
    SC (-2.8, -15.2, 1.4) (15.3, -31.0, -6.6)
    椭球中心 (-62.1, -152.1, 0) (-61.6, -148.1, 0)
    椭球半轴 (95.6, 211.7, 144.6) (114.4, 222.7, 164.8)
    下载: 导出CSV
  • [1] YANG J, FENG X, KIM J H, et al.Review of biomechanical models for human shoulder complex[J]. International Journal of Human Factors Modelling & Simulation, 2010, 1(3):271-293. https://nyuscholars.nyu.edu/en/publications/review-of-biomechanical-models-for-human-shoulder-complex
    [2] YANG J J, FENG X, XIANG Y, et al.Determining the three-dimensional relation between the skeletal elements of the human shoulder complex[J]. Journal of Biomechanics, 2009, 42(11):1762-1767. doi: 10.1016/j.jbiomech.2009.04.048
    [3] DEMPSTER W T.Mechanisms of shoulder movement[J]. Archives of Physical Medicine & Rehabilitation, 1965, 46:49-70. http://www.worldcat.org/title/mechanisms-of-shoulder-movement/oclc/173373864
    [4] ENGIN A E, CHEN S M.Statistical data base for the biomechanical properties of the human shoulder complex-Ⅰ:Kinematics of the shoulder complex[J]. Journal of Biomechanical Engineering, 1986, 108(3):215-221. doi: 10.1115/1.3138605
    [5] ENGIN A E, TUMER S T.Three-dimensional kinematic modelling of the human shoulder complex-Part Ⅰ:Physical model and determination of joint sinus cones[J]. Journal of Biomechanical Engineering, 1989, 111(2):107-112. doi: 10.1115/1.3168351
    [6] XU X, DICKERSON C R, LIN J H, et al.Evaluation of regression-based 3-D shoulder rhythms[J]. Journal of Electromyography and Kinesiology, 2015, 17:28-33. https://www.sciencedirect.com/science/article/pii/S1050641115001522
    [7] MASO F D, BLACHE Y, RAISON M, et al.Glenohumeral joint kinematics measured by intracortical pins, reflective markers, and computed tomography:A novel technique to assess acromiohumeral distance[J]. Journal of Electromyography and Kinesiology, 2015, 29:4-11. https://www.researchgate.net/publication/280654450_Glenohumeral_joint_kinematics_measured_by_intracortical_pins_reflective_markers_and_computed_tomography_A_novel_technique_to_assess_acromiohumeral_distance
    [8] HARISH V, BAKSH A, UNGI T, et al.Measurement of electromagnetic tracking error in a navigated breast surgery setup[C]//Proceedings of the SPIE Medical Imaging.Bellingham:SPIE Press, 2016, 9786:1-8.
    [9] ZHANG C, SKALLI W, LAGAC P Y, et al.Investigation of 3D glenohumeral displacements from 3D reconstruction using biplane X-ray images:Accuracy and reproducibility of the technique and preliminary analysis in rotator cuff tear patients[J]. Landscape Design Journal of the Landscape Institute, 2015, 29(10):12-20. http://europepmc.org/abstract/MED/26350569
    [10] DAL M F, RAISON M, LUNDBERG A, et al.Glenohumeral translations during range-of-motion movements, activities of daily living, and sports activities in healthy participants[J]. Clinical Biomechanics, 2015, 30(9):1002-1007. doi: 10.1016/j.clinbiomech.2015.06.016
    [11] GARNER B A, PANDY M G.Musculoskeletal model of the upper limb based on the visible human male dataset[J]. Computer Methods in Biomechanics & Biomedical Engineering 2001, 4(2):93-126. https://www.researchgate.net/publication/12067829_Musculoskeletal_Model_of_the_Upper_Limb_Based_on_the_Visible_Human_Male_Dataset
    [12] MAUREL W, THALMANN D.Human sholder modeling including scapulo-thoracic constraint and joint sinus cones[J]. Computers & Graphics, 2000, 24(2):203-218. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.7394
    [13] MAUREL W, THALMANN D, HOFFMEYER P, et al.A biomechanical musculoskeletal model of human upper limb for dynamic simulation[C]//Proceedings of the Eurographics Workshop on Computer Animation and Simulation.Vienna:Springer, 1996:121-136.
    [14] TONDU B.Modelling of the shoulder complex and application the design of upper extremities for humanoid robots[C]//Proceedings of the IEEE-Ras International Conference on Humanoid Robots.Piscataway, NJ:IEEE Press, 2005:313-320.
    [15] BOLSTERLEE B, VEEGER H E J.Modelling clavicular and scapular kinematics:From measurement to simulation[J]. Medical & Biological Engineering & Computing, 2014, 52(3):283-291. https://www.researchgate.net/profile/Dirkjan_Veeger/publication/236094598_Modelling_clavicular_and_scapular_kinematics_From_measurement_to_simulation/links/02e7e534291f563176000000/Modelling-clavicular-and-scapular-kinematics-From-measurement-to-simulation.pdf
    [16] SHOLUKHA V, JAN S V S.Combined motions of the shoulder joint complex for model-based simulation:Modeling of the shoulder rhythm(ShRm)[M]. London:Springer, 2014:205-232.
    [17] WARNER M B, CHAPPELL P H, STOKES M J.Measurement of dynamic scapular kinematics using an acromion marker cluster to minimize skin movement artifact[J]. Journal of Visualized Experiments Jove, 2015, 96:e51717. https://eprints.soton.ac.uk/374285
    [18] The National Center for Simulation in Rehabilitation Research(NCSRR).Shoulder movements database:The supplement of Delft Shoulder and Elbow Model Project[DS/OL]. (2015-03-20)[2016-05-30]. https://simtk.org/projects/dsem.
    [19] WU G, HELM F C T V D, VEEGER H E J, et al.ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-Part Ⅱ:Shoulder, elbow, wrist and hand[J]. Journal of Biomechanics, 2005, 38(5):981-992. doi: 10.1016/j.jbiomech.2004.05.042
    [20] GARNER B A, PANDY M G.A kinematic model of the upper limb based on the visible human project (VHP) image dataset[J]. Computer Methods in Biomechanics & Biomedical Engineering, 1999, 2(2):107-124. http://citeseerx.ist.psu.edu/showciting?cid=3887375
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  40
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-15
  • 录用日期:  2017-01-13
  • 网络出版日期:  2018-01-20

目录

    /

    返回文章
    返回
    常见问答