留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液氮贮箱常压停放实验与数值仿真

李佳超 梁国柱

李佳超, 梁国柱. 液氮贮箱常压停放实验与数值仿真[J]. 北京航空航天大学学报, 2018, 44(1): 99-107. doi: 10.13700/j.bh.1001-5965.2017.0016
引用本文: 李佳超, 梁国柱. 液氮贮箱常压停放实验与数值仿真[J]. 北京航空航天大学学报, 2018, 44(1): 99-107. doi: 10.13700/j.bh.1001-5965.2017.0016
LI Jiachao, LIANG Guozhu. Experiment and numerical simulation of liquid nitrogen tank atmospheric ground parking[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 99-107. doi: 10.13700/j.bh.1001-5965.2017.0016(in Chinese)
Citation: LI Jiachao, LIANG Guozhu. Experiment and numerical simulation of liquid nitrogen tank atmospheric ground parking[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 99-107. doi: 10.13700/j.bh.1001-5965.2017.0016(in Chinese)

液氮贮箱常压停放实验与数值仿真

doi: 10.13700/j.bh.1001-5965.2017.0016
基金项目: 

中国运载火箭技术研究院高校联合创新基金资助项目 CALT201302

详细信息
    作者简介:

    李佳超 男, 博士研究生。主要研究方向:运载火箭低温贮箱工作过程

    梁国柱 男, 博士, 教授, 博士生导师。主要研究方向:火箭发动机与运载火箭动力系统设计与仿真

    通讯作者:

    梁国柱, E-mail: lgz@buaa.edu.cn

  • 中图分类号: V434

Experiment and numerical simulation of liquid nitrogen tank atmospheric ground parking

Funds: 

China Academy of Launch Vehicle Technology-University Joint Innovation Fund Project CALT201302

More Information
  • 摘要:

    为研究低温推进剂的常压停放过程,设计了可视化液氮贮箱实验系统。实验中研究充填率和环境温度对液氮汽化量的影响,并测量贮箱内流体和贮箱外壁面的温度随时间和位置的变化。实验得出贮箱常压停放过程,相变主要在壁面和气液界面产生,并且气枕区存在温度分层,距出口位置越近温度越高;而液体区温度基本一致,处于饱和状态。贮箱外壁面在轴向的温度分布显著不同,处于液体区壁面温度低。运用分子动力学推导出的Hertz-Knudsen公式作为气液相变的传热传质源项,并据实验测得温度边界条件,采用混合物模型对贮箱常压停放状态进行30 min的数值仿真。仿真得到结果显示体积汽化速率与实验数据的偏差在5%以内,液体区的温度仿真与实验的偏差在0.15 K左右。

     

  • 图 1  液氮贮箱常压停放实验系统原理图

    Figure 1.  Schematic diagram of experimental system ofliquid nitrogen tank atmospheric ground parking

    图 2  液氮贮箱常压停放实验现场图

    Figure 2.  Diagram of liquid nitrogen tankatmospheric ground parking on experimental site

    图 3  液氮贮箱常压停放实验现场测控图

    Figure 3.  Measurement and control diagram of liquidnitrogen tank atmospheric ground parking on experimental site

    图 4  不同充填率和温度时,液氮体积随时间的变化

    Figure 4.  Variation of liquid nitrogen volume with time underdifferent filling rates and temperatures

    图 5  不同环境温度时,液氮体积随时间的变化

    Figure 5.  Variation of liquid nitrogen volume with timeunder different ambient temperatures

    图 6  充填率为70.4%和86.1%时,流体温度与位置的关系

    Figure 6.  Relationship between fluid temperature andlocation under 70.4% and 86.1% filling rate

    图 7  充填率为70.4%和86.1%时,壁面温度与位置关系

    Figure 7.  Relationship between wall temperature andlocation under 70.4% and 86.1% filling rate

    图 8  常压停放贮箱网格图

    Figure 8.  Grids of tank during atmospheric ground parking

    图 9  贮箱外壁面温度随时间变化

    Figure 9.  Variation of tank's outer wall temperature with time

    图 10  实验和仿真得出的液氮体积的比较

    Figure 10.  Comparison of liquid nitrogen volumebetween experiment and simulation

    图 11  实验和仿真得出的液氮温度的比较

    Figure 11.  Comparison of liquid nitrogen temperaturebetween experiment and simulation

    图 12  仿真得到的贮箱内流体温度分布

    Figure 12.  Fluid temperature distribution simulated in tank

    图 13  仿真得到的贮箱内流体速度分布

    Figure 13.  Fluid velocity distribution simulated in tank

    图 14  仿真得到的流体与固体壁面的换热量与时间的关系

    Figure 14.  Relationship of heat transition between liquid andsolid wall simulated in tank and time

    表  1  贮箱液位与体积变化关系

    Table  1.   Variation of volume of tank with liquid level

    液位/cm体积/L充填率/%总体积/L
    01.6077.6
    54.90723.3
    108.20739.021.03
    1511.50754.7
    2014.80770.4
    2518.10786.1
    下载: 导出CSV
  • [1] STOCHL R J, KNOLL R H. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R[C]//AIAA, SAE, ASME, and ASEE, 27th Joint Propulsion Conference. Reston: AIAA, 1991: 1-20.
    [2] BARSI S, KASSEMI M, PANZARELLA C H, et al. A tank self-pressurization experiment using a model fluid in normal gravity[C]//AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: 1-13.
    [3] SEO M, JEONG S.Analysis of self-pressurization phenomenon of cryogenic fluid storage tank with thermal diffusion model[J].Cryogenics, 2010, 50(9):549-555. doi: 10.1016/j.cryogenics.2010.02.021
    [4] DAS S P, CHAKRABORTY S, DUTTA P.Studies on thermal stratification phenomenon in LH2 storage vessel[J].Heat Transfer Engineering, 2004, 25(4):54-66. doi: 10.1080/01457630490443767
    [5] WANG C L, LI Y, WANG R S.Performance comparison between no-vent and vented fills in vertical thermal-insulated cryogenic cylinders[J].Experimental Thermal and Fluid Science, 2011, 35(2):311-318. doi: 10.1016/j.expthermflusci.2010.09.013
    [6] 聂中山, 李青, 洪国同, 等.车载液氢杜瓦蒸发率理论与试验研究[J].低温工程, 2004(4):55-58. http://d.old.wanfangdata.com.cn/Periodical/dwgc200404011

    NIE Z S, LI Q, HONG G T, et al.Theoretical and experimental investigation of evaporation rate in vehicle liquid hydrogen dewar[J].Cryogenics, 2004(4):55-58(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dwgc200404011
    [7] 王贵仁. 低温容器内压力变化规律的研究[D]. 兰州: 兰州理工大学, 2008: 28-40. http://cdmd.cnki.com.cn/Article/CDMD-10731-2008113656.htm

    WANG G R. The research on variation law of pressure in cryogenic vessel[D]. Lanzhou: Lanzhou University of Technology, 2008: 28-40(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10731-2008113656.htm
    [8] 乔国发. 影响LNG储存容器蒸发率因素的研究[D]. 东营: 中国石油大学, 2007: 73-87. http://cdmd.cnki.com.cn/Article/CDMD-10425-2008199207.htm

    QIAO G F. The study on the influential factors of evaporation rate of the liquefied natural gas tank[D]. Dongying: China University of Petroleum, 2007: 73-87(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10425-2008199207.htm
    [9] 代予东, 赵红轩.运用数学方法模拟推进剂贮箱增压[J].火箭推进, 2003, 29(3):34-40. http://d.old.wanfangdata.com.cn/Periodical/hjtj200303007

    DAI Y D, ZHAO H X.Numerical modeling of pressurization of a propellant tank[J].Journal of Rocket Propulsion, 2003, 29(3):34-40(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hjtj200303007
    [10] ESTEY P N, LEWIS D H, CONNOR M.Prediction of a propellant tank pressure history using state space methods[J].Journal of Spacecraft and Rockets, 1983, 20(1):49-54. doi: 10.2514/3.28355
    [11] PANZARELLA C H, KASSEMI M.On the validity of purely thermodynamic descriptions of two-phase cryogenic fluid storage[J].Journal of Fluid Mechanics, 2003, 484:41-68. doi: 10.1017/S0022112003004002
    [12] 刘展, 孙培杰, 李鹏, 等.地面停放低温液氧贮箱热物理过程研究[J].西安交通大学学报, 2016, 50(9):36-42. doi: 10.7652/xjtuxb201609006

    LIU Z, SUN P J, LI P, et al.Research on the thermal physical process of cryogenic liquid oxygen tank in ground parking[J].Journal of Xi'an Jiaotong University, 2016, 50(9):36-42(in Chinese). doi: 10.7652/xjtuxb201609006
    [13] CHEN L, LIANG G Z.Simulation research of vaporization and pressure variation in a cryogenic propellant tank at the launch site[J].Microgravity Science and Technology, 2013, 25(4):203-211. doi: 10.1007/s12217-013-9340-2
    [14] FADHL B, WROBEL L C, JOUHARA H.CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a[J].Applied Thermal Engineering, 2015, 78:482-490. doi: 10.1016/j.applthermaleng.2014.12.062
    [15] 陈亮, 梁国柱, 邓新宇, 等.贮箱内低温推进剂汽化过程的CFD数值仿真[J].北京航空航天大学学报, 2013, 39(2):264-268. http://bhxb.buaa.edu.cn/CN/abstract/abstract12543.shtml

    CHEN L, LIANG G Z, DENG X Y, et al.CFD numerical simulation of cryogenic propellant vaporization in tank[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2):264-268(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12543.shtml
    [16] Fluent A. ANSYS I: Fluent theory guide[EB/OL]. Canonbury: ANSYS Inc., 2010. https: //support. ansys. com/.
    [17] 刘泉. 纯蒸气及含不凝气蒸气冷凝的数值研究[D]. 合肥: 中国科学技术大学, 2015: 73-87. http://cdmd.cnki.com.cn/Article/CDMD-10358-1015615597.htm

    LIU Q. Numerical investigation on condensation with and without non-condensable gas[D]. Hefei: University of Science and Technology of China, 2015: 73-87(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10358-1015615597.htm
    [18] KNUDSEN M, PARTINGTON J R.The kinetic theory of gases:Some modern aspects[J].The Journal of Physical Chemistry, 1935, 39(2):307. http://www.worldcat.org/title/kinetic-theory-of-gases-some-modern-aspects/oclc/1806782
    [19] DE SCHEPPER S C K, HEYNDERICKX G J, MARIN G B.Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker[J].Computers and Chemical Engineering, 2009, 33(1):122-132. doi: 10.1016/j.compchemeng.2008.07.013
    [20] LIU Z, SUNDEN B, YUAN J.VOF modeling and analysis of filmwise condensation between vertical parallel plates[J].Heat Transfer Research, 2012, 43(1):47-68. doi: 10.1615/HeatTransRes.v43.i1
    [21] LEE W H. A pressure iteration scheme for two-phase flow modeling: LA-UR-79-975[R]. New Mexico: Los Alamos National Laboratory, 1979.
    [22] 陈国邦.低温工程材料[M].杭州:浙江大学出版社, 1998:195-201.

    CHEN G B.Cryogenic engineering materials[M].Hangzhou:Zhejiang University Press, 1998:195-201(in Chinese).
    [23] ISHⅡ M, HIBIKI T.Thermo-fluid dynamics of two-phase flow[M].Berlin:Springer, 2011:361-395.
    [24] 陈国邦, 黄永华, 包锐.低温流体热物理性质[M].北京:国防工业出版社, 2006:190-200.

    CHEN G B, HUANG Y H, BAO R.Cryogenic fluid thermos physical properties[M].Beijing:National Defense Industry Press, 2006:190-200(in Chinese).
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  701
  • HTML全文浏览量:  71
  • PDF下载量:  471
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-12
  • 录用日期:  2017-05-19
  • 网络出版日期:  2018-01-20

目录

    /

    返回文章
    返回
    常见问答