留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于抛物方程的低空空域监测雷达城市环境地杂波强度分布建模

雷鹏 冉志强 王俊 刘晓敏

雷鹏, 冉志强, 王俊, 等 . 基于抛物方程的低空空域监测雷达城市环境地杂波强度分布建模[J]. 北京航空航天大学学报, 2018, 44(1): 63-70. doi: 10.13700/j.bh.1001-5965.2017.0037
引用本文: 雷鹏, 冉志强, 王俊, 等 . 基于抛物方程的低空空域监测雷达城市环境地杂波强度分布建模[J]. 北京航空航天大学学报, 2018, 44(1): 63-70. doi: 10.13700/j.bh.1001-5965.2017.0037
LEI Peng, RAN Zhiqiang, WANG Jun, et al. Parabolic equation based land clutter power map modeling for low-altitude surveillance radar in urban areas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 63-70. doi: 10.13700/j.bh.1001-5965.2017.0037(in Chinese)
Citation: LEI Peng, RAN Zhiqiang, WANG Jun, et al. Parabolic equation based land clutter power map modeling for low-altitude surveillance radar in urban areas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 63-70. doi: 10.13700/j.bh.1001-5965.2017.0037(in Chinese)

基于抛物方程的低空空域监测雷达城市环境地杂波强度分布建模

doi: 10.13700/j.bh.1001-5965.2017.0037
基金项目: 

国家自然科学基金 61501011

国家自然科学基金 61671035

详细信息
    作者简介:

    雷鹏  男, 博士, 讲师。主要研究方向:信号处理、模式识别

    通讯作者:

    雷鹏, E-mail: peng.lei@buaa.edu.cn

  • 中图分类号: TN951;TN955;V19

Parabolic equation based land clutter power map modeling for low-altitude surveillance radar in urban areas

Funds: 

National Natural Science Foundation of China 61501011

National Natural Science Foundation of China 61671035

More Information
  • 摘要:

    地杂波强度是影响雷达低空空域监测性能的重要因素之一。尤其在城市环境下,高层建筑和大气结构将使雷达信号传播及地表电磁散射特性产生复杂变化。提出一种基于抛物方程(PE)的城市环境地杂波强度分布建模方法,能够为低空空域监测雷达系统性能预估、站址选择和杂波特性分析提供理论基础。首先,通过宽角PE模型,预测城市高层建筑及大气结构引起的雷达信号反射、绕射、折射和多径效应;其次,将宽角PE模型扩展到三维空间,结合雷达方程,实现各杂波单元的强度计算;最后,利用仿真结果分析了不同建筑外形和高层建筑群对雷达信号传播和地杂波强度的影响。

     

  • 图 1  PE迭代求解过程

    Figure 1.  Iterative procedure of PE solution

    图 2  地杂波强度分布建模流程图

    Figure 2.  Flowchart of land clutter power map modeling

    图 3  简化建筑模型

    Figure 3.  Simplified building models

    图 4  边界平移法

    Figure 4.  Boundary shift method

    图 5  直角坐标系到雷达极坐标系的正向转换

    Figure 5.  Forward transformation from Cartesian grid to radar polar coordinate system

    图 6  照射面积计算示意图

    Figure 6.  Illustration of clutter irradiated area calculation

    图 7  矩形建筑条件下的雷达信号传播特性

    Figure 7.  Propagation characteristics of radar signals over a rectangular building

    图 8  帆形建筑条件下的雷达信号传播特性

    Figure 8.  Propagation characteristics of radar signals over a sail-shaped building

    图 9  建筑群分布示意图

    Figure 9.  Illustration of building distribution

    图 10  城市建筑群环境下的雷达信号传播特性

    Figure 10.  Propagation characteristics of radar signals over urban buildings

    图 11  地杂波强度分布结果

    Figure 11.  Result of land clutter power map

  • [1] 陈唯实, 宁焕生.利用一次雷达实现低空空域的安全监视[J].北京航空航天大学学报, 2012, 38(2):143-148. http://bhxb.buaa.edu.cn/CN/abstract/abstract12191.shtml

    CHEN W S, NING H S.Security surveillance of low-altitude airspace with primary radar[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(2):143-148(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12191.shtml
    [2] TAKAHASHI R, HIRATA K, MANIWA H. Altitude estimation of low elevation target over the sea for surface based phased array radar[C]//Proceedings of IEEE Radar Conference. Piscataway, NJ: IEEE Press, 2010: 123-128.
    [3] ZHENG Y S, CHEN B X.Altitude measurement of low-angle target in complex terrain for very high-frequency radar[J].IET Radar Sonar Navigation, 2015, 9(8):967-973. doi: 10.1049/iet-rsn.2014.0544
    [4] MAN M Y, LEI Z Y, XIE Y J, et al.Monte Carlo simulation of the echo signals from low-flying targets for airborne radar[J].International Journal of Antennas & Propagation, 2014:416985. doi: 10.1155/2014/416985
    [5] GREENBERG E, NAOR M. Direction of arrival estimation in urban multipath environments[C]//Proceedings of European Conference on Antennas and Propagation. Piscataway, NJ: IEEE Press, 2016: 1-5.
    [6] ANDERSON K D.Radar detection of low-altitude targets in a maritime environment[J].IEEE Transactions on Antennas and Propagation, 1995, 43(6):609-613. doi: 10.1109/8.387177
    [7] SIRKOVA I.Brief review on PE method application to propagation channel modeling in sea environment[J].Central European Journal of Engineering, 2012, 2(1):19-38. doi: 10.2478/s13531-011-0049-y
    [8] ZHAGN P, BAI L, WU Z, et al.Applying the parabolic equation to tropospheric groundwave propagation:A review of recent achievements and significant milestones[J].IEEE Antennas & Propagation Magazine, 2016, 58(3):31-44. http://adsabs.harvard.edu/abs/2016IAPM...58...31Z
    [9] DONOHUE D J, KUTLER J R.Modeling radar propagation over terrain[J].Johns Hopkins APL Technical Digest, 1997, 18(2):279-287. https://core.ac.uk/display/22829292
    [10] 胡绘斌. 预测复杂环境下电波传播特性的算法研究[D]. 长沙: 国防科学技术大学, 2006: 4-8. http://cdmd.cnki.com.cn/Article/CDMD-90002-2007141048.htm

    HU H B. Study on the algorithms of predicting the radio propagation characteristics in complex environments[D]. Changsha: National University of Defense Technology, 2006: 4-8(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-90002-2007141048.htm
    [11] THOMSON D J, CHAPMAN N R.A wide-angle split-step algorithm for the parabolic equation[J].Journal of the Acoustical Society of America, 1983, 74(6):1848-1854. doi: 10.1121/1.390272
    [12] BARRIOS A E.A terrain parabolic equation model for propagation in the troposphere[J].IEEE Transactions on Antennas and Propagation, 1994, 42(1):90-98. doi: 10.1109/8.272306
    [13] LI L, LIN L K, WU Z S, et al.Study on the maximum calculation height and the maximum propagation angle of the troposcatter wide-angle parabolic equation method[J].IET Microwaves Antennas & Propagation, 2016, 10(6):686-691. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7459748
    [14] KUTTLER J R, JANASWAMY R.Improved Fourier transform methods for solving the parabolic wave equation[J].Radio Science, 2002, 37(2):1-11. http://ieeexplore.ieee.org/document/7770520/
    [15] BARRIOS A E. Considerations in the development of the advanced propagation model (APM) for U. S. navy applications[C]//Proceedings of the International Radar Conference. Piscataway, NJ: IEEE Press, 2003: 77-82.
    [16] AWADSALLAH R S, GEHMAN J Z, KUTTLER J R, et al.Modeling radar propagation in three-dimensional environments[J].Johns Hopkins APL Technical Digest, 2004, 25(2):101-111. https://www.mendeley.com/research-papers/modeling-radar-propagation-threedimensional-environments/
    [17] NORMAN E D. Assessment of the wind farm impact on the radar: 1002. 2654v1[R]. Limours: Thales Air Systems, 2010: 1-55.
    [18] LIN C C, REILLY J P.A site-specific model of radar terrain backscatter and shadowing[J].Johns Hopkins APL Technical Digest, 1997, 18(3):432-447. http://www.jhuapl.edu/techdigest/TD/td1803/lin.pdf
    [19] 米切尔.雷达系统模拟[M].北京:科学出版社, 1982:124-127.

    MITCHELL R L.Radar signal simulation[M].Beijing:Science Press, 1982:124-127(in Chinese).
    [20] 许小剑, 黄培康.雷达系统及其信息处理[M].北京:电子工业出版社, 2010:156-158.

    XU X J, HUANG P K.Radar system and signal processing[M].Beijing:Publishing House of Electronics Industry, 2010:156-158(in Chinese).
    [21] FENG S, CHEN J.Law-angle reflectivity modeling of land clutter[J].IEEE Geosciences and Remote Sensing Letters, 2006, 3(2):254-258. doi: 10.1109/LGRS.2005.863847
  • 加载中
图(11)
计量
  • 文章访问数:  879
  • HTML全文浏览量:  235
  • PDF下载量:  769
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-18
  • 录用日期:  2017-02-24
  • 网络出版日期:  2018-01-20

目录

    /

    返回文章
    返回
    常见问答