留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co和P掺杂对α-Fe2O3光电化学催化分解水的影响

朱珊 俞有幸 郝维昌

朱珊, 俞有幸, 郝维昌等 . Co和P掺杂对α-Fe2O3光电化学催化分解水的影响[J]. 北京航空航天大学学报, 2018, 44(6): 1141-1146. doi: 10.13700/j.bh.1001-5965.2017.0444
引用本文: 朱珊, 俞有幸, 郝维昌等 . Co和P掺杂对α-Fe2O3光电化学催化分解水的影响[J]. 北京航空航天大学学报, 2018, 44(6): 1141-1146. doi: 10.13700/j.bh.1001-5965.2017.0444
ZHU Shan, YU Youxing, HAO Weichanget al. Effect of Co and P doping on α-Fe2O3 photoelectrochemical catalysis water splitting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1141-1146. doi: 10.13700/j.bh.1001-5965.2017.0444(in Chinese)
Citation: ZHU Shan, YU Youxing, HAO Weichanget al. Effect of Co and P doping on α-Fe2O3 photoelectrochemical catalysis water splitting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1141-1146. doi: 10.13700/j.bh.1001-5965.2017.0444(in Chinese)

Co和P掺杂对α-Fe2O3光电化学催化分解水的影响

doi: 10.13700/j.bh.1001-5965.2017.0444
基金项目: 

国家自然科学基金 51201004

详细信息
    作者简介:

    朱珊  女, 硕士研究生。主要研究方向:纳米氧化铁材料的制备、光电化学催化分解水性能

    俞有幸  男, 博士, 副教授, 硕士生导师。主要研究方向:磁性材料、电催化材料

    郝维昌  男, 博士, 教授, 博士生导师。主要研究方向:氧化物半导体

    通讯作者:

    俞有幸, E-mail:yuyouxing@buaa.edu.cn

  • 中图分类号: O643.3;TQ116.2

Effect of Co and P doping on α-Fe2O3 photoelectrochemical catalysis water splitting

Funds: 

National Natural Science Foundation of China 51201004

More Information
  • 摘要:

    在众多光阳极材料中,纳米结构材料α-Fe2O3由于其光吸收显著、化学稳定性好、储量丰富等优势,被认为是最有前途的材料之一。利用水热法制备了具有良好光解水性能的Co和P掺杂α-Fe2O3纳米材料。经过掺杂后α-Fe2O3纳米材料仍为纳米棒状形貌,纳米棒的粒径增加。实验发现,Co掺杂α-Fe2O3制成的电极在标准光照射下的最大光生电流密度为0.453 mA/cm2,是未掺杂样品的20.6倍,P掺杂α-Fe2O3制成的电极在标准光照射下的最大光生电流密度为0.276 mA/cm2,是未掺杂样品的12.5倍,具备了高效光解水性能。同时通过SEM、TEM、XRD、UV-Vis和Mott-Schottky测试等方法,结合形貌与结构表征,研究了α-Fe2O3的光电化学分解水性能影响机理。

     

  • 图 1  未掺杂、P掺杂和Co掺杂α-Fe2O3薄膜的J-V曲线

    Figure 1.  J-V curves of pristine, P doped and Co doped α-Fe2O3 films

    图 2  未掺杂、P掺杂和Co掺杂α-Fe2O3薄膜的Mott-Schottky曲线

    Figure 2.  Mott-Schottky curves of pristine, P doped and Co doped α-Fe2O3 films

    图 3  Co和P掺杂α-Fe2O3的SEM照片

    Figure 3.  SEM images of Co doped and P doped α-Fe2O3

    图 4  未掺杂、P掺杂和Co掺杂的α-Fe2O3的UV-Vis图谱

    Figure 4.  UV-Vis spectra of pristine, P doped and Co doped and α-Fe2O3

    图 5  未掺杂、P掺杂和Co掺杂的α-Fe2O3的XRD图谱

    Figure 5.  XRD patterns of pristine, P doped and Co doped α-Fe2O3

    图 6  Co掺杂α-Fe2O3的元素分布图

    Figure 6.  Element mapping of Co doped α-Fe2O3

    图 7  P掺杂α-Fe2O3的元素分布图

    Figure 7.  Element mapping of P doped α-Fe2O3

    图 8  未掺杂、P掺杂与Co掺杂α-Fe2O3的光电化学性能与形貌

    Figure 8.  Electronchemistry performances and appearance of pristine, P doped and Co doped α-Fe2O3

  • [1] FUJISHIMA A, HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature, 1972, 238(5358):37-38. doi: 10.1038/238037a0
    [2] ASAHI R, MORIKAWA T, OHWAKI T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science, 2001, 293(5528):269-271. doi: 10.1126/science.1061051
    [3] CHEN X, MAO S S.Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications[J].Chemical Reviews, 2007, 107(41):2891-2959. doi: 10.1021/cr0500535
    [4] FRANKING R, LI L, LUKOWSKI M A, et al.Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation[J].Energy & Environmental Science, 2013, 6(2):500-512. http://pubs.rsc.org/en/content/articlehtml/2012/ee/c2ee23837c
    [5] CESAR I, SIVULA K, KAY A, et al.Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting[J].Journal of Physics Chemistry C, 2009, 113(2):772-782. doi: 10.1021/jp809060p
    [6] LIAO P, TOROKER M C, CARTER E A.Electron transport in pure and doped hematite[J].Nano Letters, 2011, 11(4):1775-1781. doi: 10.1021/nl200356n
    [7] ZHANG P, SHWARSCTEIN K A, HU Y S, et al.Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD[J].Energy & Environmental Science, 2011, 4(3):1020-1028. http://pubs.rsc.org/en/content/articlehtml/2011/ee/c0ee00656d
    [8] ZANDI O, KLAHR B M, HAMANN T W.Highly photoactive Ti-doped α-Fe2O3 thin film electrodes:Resurrection of the dead layer[J].Energy & Environmental Science, 2013, 6(2):634-642. http://pubs.rsc.org/en/Content/ArticleLanding/2013/EE/C2EE23620F#!divAbstract
    [9] RIOULT M, MAGNAN H, STANESCU D, et al.Single crystalline hematite films for solar water splitting:Ti-doping and thickness effects[J].Journal of Physics Chemistry C, 2014, 118(6):3007-3014. doi: 10.1021/jp500290j
    [10] ABEL A J, PATEL A M, SMOLIN S Y, et al.Enhanced photoelectrochemical water splitting via SILAR-deposited Ti-doped hematite thin films with an FeOOH overlayer[J].Journal of Materials Chemistry A, 2016, 4(17):6495-6504. doi: 10.1039/C6TA01862A
    [11] KUMARN P, SHARMA P, JOSHI A G, et al.Nano porous hematite for solar hydrogen production[J].Journal of Electrochemical Society, 2012, 159(8):H685-H691. doi: 10.1149/2.016208jes
    [12] SHEN S, GUO P, WHEELER D A, et al.Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays[J].Nanoscale, 2013, 5(20):9867-9874. doi: 10.1039/c3nr03245k
    [13] LIN Y, XU Y, MAYER M T, et al.Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting[J].Journal of the American Chemical Society, 2012, 134(12):5508-5511. doi: 10.1021/ja300319g
    [14] KOSA M, BARAD H N, SINGH V, et al.A combined computational and experimental investigation of Mg doped α-Fe2O3[J].Physical Chemistry Chemical Physics, 2016, 18(2):781-791. doi: 10.1039/C5CP05987A
    [15] INGLER W B, KHAN S U M.Photoresponse of spray pyrolytically synthesized copper-doped P-Fe2O3 thin film electrodes in water splitting[J].International Journal of Hydrogen Energy, 2005, 30(8):821-827. doi: 10.1016/j.ijhydene.2004.06.014
    [16] INGLERJR W B I, BALTRUS J P, KHAN S U M.Photoresponse of p-type zinc-doped lron(Ⅲ) oxide thin films[J].Journal of the American Chemical Society, 2004, 126(33):10238-10239. doi: 10.1021/ja048461y
    [17] QI X, SHE G, WANG M, et al.Electrochemical synthesis of p-type Zn-doped α-Fe2O3, nanotube arrays for photoelectrochemical water splitting[J].Chemical Communications, 2013, 49(51):5742-5744. doi: 10.1039/c3cc40599k
    [18] SCHREBLER R S, BALLESTEROS L, BURGOS A, et al.Electrodeposited nanostructured α-Fe2O3 photoanodes for solar water splitting:Effect of surface co-modification on photoelectrochemical performance[J].Journal of the Electrochemical Society, 2011, 158(8):D500-D505. doi: 10.1149/1.3599059
    [19] LIAO P, KEITH J A, CARTER E A.Water oxidation on pure and doped hematite (0001) surfaces:Prediction of Co and Ni as effective dopants for electrocatalysis[J].Journal of the American Chemical Society, 2012, 134(32):13296-13309. doi: 10.1021/ja301567f
    [20] LEE C Y, WANG L, KADO Y, et al.Si-doped Fe2O3, nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting[J].Electrochemistry Communications, 2013, 3(5):308-311. http://www.doc88.com/p-6711224005013.html
    [21] KAY A, CESAR I, GRAETZEL M.New Benchmark for water photooxidation by nanostructured α-Fe2O3 films[J].Journal of the American Chemical Society, 2006, 128(49):15714-15721. doi: 10.1021/ja064380l
    [22] ZHANG Y, JIANG S, SONG W, et al.Nonmetal P-doped hematite photoanode with enhanced electron mobility and high water oxidation activity[J].Energy & Environmental Science, 2015, 8(4):1231-1236. http://or.nsfc.gov.cn/handle/00001903-5/197240
    [23] LIN Y, ZHOU S, SHEEHAN S W, et al.Nanonet-based hematite heteronanostructures for efficient solar water splitting[J].Journal of the American Chemical Society, 2011, 133(8):2398-2401. doi: 10.1021/ja110741z
    [24] XI L, TRAN P D, CHIAM S Y, et al.Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation[J].Journal of Physics Chemistry C, 2012, 116(26):13884-13889. doi: 10.1021/jp304285r
    [25] LIAN X, XIN Y, LIU S, et al.Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol-gel method[J].Applied Surface Science, 2012, 258(7):2307-2311. doi: 10.1016/j.apsusc.2011.10.001
    [26] MORRISH R, RAHMAN M, MACELROY J M, et al.Activation of hematite nanorod arrays for photoelectrochemical water splitting[J].CHEMSUSCHEM, 2011, 4(4):474-479. doi: 10.1002/cssc.201100066
    [27] MENG X, QIN G, GODDARD A G, et al.Theoretical understanding of enhanced photoelectrochemical catalytic activity of Sn-doped hematite:Anisotropic catalysis and effects of morin transition and Sn doping[J].Journal of Physics Chemistry C, 2013, 117(8):3779-3784. doi: 10.1021/jp310740h
  • 加载中
图(8)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  20
  • PDF下载量:  395
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-03
  • 录用日期:  2017-09-22
  • 网络出版日期:  2018-06-20

目录

    /

    返回文章
    返回
    常见问答