留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电动静液作动器热力学建模方法及油液温升规律

王岩 郭生荣 杨乐

王岩, 郭生荣, 杨乐等 . 电动静液作动器热力学建模方法及油液温升规律[J]. 北京航空航天大学学报, 2018, 44(8): 1596-1602. doi: 10.13700/j.bh.1001-5965.2017.0622
引用本文: 王岩, 郭生荣, 杨乐等 . 电动静液作动器热力学建模方法及油液温升规律[J]. 北京航空航天大学学报, 2018, 44(8): 1596-1602. doi: 10.13700/j.bh.1001-5965.2017.0622
WANG Yan, GUO Shengrong, YANG Leet al. A thermodynamic modeling method of electro-hydrostatic actuator and law of oil temperature rise[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1596-1602. doi: 10.13700/j.bh.1001-5965.2017.0622(in Chinese)
Citation: WANG Yan, GUO Shengrong, YANG Leet al. A thermodynamic modeling method of electro-hydrostatic actuator and law of oil temperature rise[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1596-1602. doi: 10.13700/j.bh.1001-5965.2017.0622(in Chinese)

电动静液作动器热力学建模方法及油液温升规律

doi: 10.13700/j.bh.1001-5965.2017.0622
基金项目: 

国家自然科学基金 51375029

国家自然科学基金 51775013

详细信息
    作者简介:

    王岩  男, 博士, 副教授。主要研究方向:液压系统控制、数值模拟与热管理等

    通讯作者:

    王岩, E-mail: wybuaa@buaa.edu.cn

  • 中图分类号: V245.1

A thermodynamic modeling method of electro-hydrostatic actuator and law of oil temperature rise

Funds: 

National Natural Science Foundation of China 51375029

National Natural Science Foundation of China 51775013

More Information
  • 摘要:

    电动静液作动器(EHA)是多电飞机关键子系统之一,其高度集成设计在减小体积和质量的同时,大幅降低换热能力,导致EHA油液温度过高、功能丧失。针对目前EHA一维热力学建模不足问题,以油冷电机驱动的EHA为研究对象,提出EHA的“三维+一维+三维”的热力学建模方法。首先,分析EHA能量转换及传递规律,探究EHA热能产生和扩散途径,在考虑参数时变基础上提出EHA的“三维+一维+三维”热力学建模方法;其次,基于ANSYS平台建立EHA电机生热和壳体对流换热的三维热力学模型;然后,建立柱塞泵、液压缸、阀和增压油箱等一维热力学模型;最后,在AMESim平台上搭建EHA的“三维+一维+三维”的热力学模型。仿真和实验验证了EHA的“三维+一维+三维”热力学建模方法的正确性,揭示了EHA油液温升规律,为EHA的热设计提供了理论依据。

     

  • 图 1  EHA原理

    Figure 1.  Principle of EHA

    图 2  EHA能量传递及转换过程

    Figure 2.  Energy transfer and transformation process in EHA

    图 3  EHA的“三维+一维+三维”热力学建模方法

    Figure 3.  "3D-1D-3D" thermodynamic modeling method of EHA

    图 4  电机三维热力学建模架构

    Figure 4.  3D thermodynamic modeling architecture of motor

    图 5  转速为18 000 r/min时电机轴截面稳态温度分布

    Figure 5.  Steady temperature distribution of motor axial section when speed is 18 000 r/min

    图 6  不同功率下电机总损耗随转速变化曲线

    Figure 6.  Total loss-speed curves of motor in different power conditions

    图 7  风速为5 m/s时增压油箱对流换热系数

    Figure 7.  Convective heat transfer coefficient of oil tank when wind speed is 5 m/s

    图 8  EHA的“三维+一维+三维”热力学模型

    Figure 8.  "3D-1D-3D" thermal model of EHA

    图 9  不同部件内油液温度

    Figure 9.  Oil temperature in different parts

    图 10  不同工作频率下伺服电机的油液温度

    Figure 10.  Oil temperature of servo motor under different working frequency conditions

    图 11  不同负载下伺服电机的油液温度

    Figure 11.  Oil temperature of servo motor under different load conditions

    图 12  伺服电机油液温度仿真数据与实验数据对比

    Figure 12.  Comparison between simulation data and experimental data of oil temperature of servo motor

    表  1  EHA参数

    Table  1.   EHA parameters

    参数数值
    柱塞泵排量/(mL·r-1)4.3
    定子绕组电阻/Ω1.15
    定子环电感/H0.01
    磁链/Wb0.134
    晶体管正向压降/V1
    晶体管电阻/Ω0.013
    活塞直径/mm65
    作动器行程/mm50
    二极管电阻/Ω0.008 7
    二极管正向压降/V1.3
    下载: 导出CSV

    表  2  EHA运动规律

    Table  2.   Motion laws of EHA

    正弦信号序号幅值/mm频率/Hz周期/s持续时间/s
    12.111506
    272/31.533
    3281/3351
    4421/5510
    下载: 导出CSV
  • [1] TODESCHI M. A380 flight control actuation lessons learned on EHAs design[C]//Proceedings of the International Conference on Recent Advances in Aerospace Actuation Systems and Components, 2007: 21-26.
    [2] TAKEBAYASHI W, HARA Y. Thermal design tool for EHA[C]//Proceedings of the International Conference on Recent Advances in Aerospace Actuation Systems and Components, 2004: 15-19.
    [3] LI J, ZHANG X, YIN Y B. Dynamic temperature simulation of an accumulator in aircraft hydraulic systems[C]//2011 International Conference on Fluid Power and Mechatronics (FPM). Piscataway, NJ: IEEE Press, 2011: 653-657.
    [4] STADLBAUER K, POLTSCHAK F, RAFETSEDER D, et al. A spice-based lumped parameter thermal model with geometrically distributed elements for electro-hydraulic actuators[C]//2012 International Symposium on Power Electronics, Electrical Dri-ves, Automation and Motion(SPEEDAM). Piscataway, NJ: IEEE Press, 2012: 511-516.
    [5] LI C G, JIAO Z X.Calculation method for thermal-hydraulic system simulation[J].Journal of Heat Transfer, 2008, 130(8):084503. doi: 10.1115/1.2928006
    [6] SCOTT T, UPHOLD J. Thermal modeling of power steering system performance[C]//SAE World Congress & Exhibition, 2008: 1039-1044.
    [7] LANA E D, DE NEGRI V J. A new evaluation method for hydraulic gear pump efficiency through temperature measurements[C]//SAE 2006 Commercial Vehicle Engineering Congress & Exhibition, 2006: 3503.
    [8] LI J, XU J L, ZHANG X, et al. An estimation method of the fluid temperature for commercial aircraft hydraulic systems[C]//2010 International Conference on Mechanic Automation and Control Engineering (MACE). Piscataway, NJ: IEEE Press, 2010: 2962-2965.
    [9] 卢宁, 付永领, 孙新学.基于AMEsim的双压力柱塞泵的数字建模与热分析[J].北京航空航天大学学报, 2006, 32(9):1054-1058. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb200609014

    LU N, FU Y L, SUN X X.Digital modeling and thermal analysis of double pressure piston pump based on AMEsim[J].Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(9):1054-1058(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb200609014
    [10] 李永林, 徐浩军, 曹克强, 等.航空柱塞泵全工况效率分析及热力学建模[J].北京航空航天大学学报, 2010, 36(12):1470-1472. http://bhxb.buaa.edu.cn/CN/abstract/abstract11844.shtml

    LI Y L, XU H J, CAO K Q, et al.Efficiency analysis and thermodynamic modeling of aircraft piston pump in all conditions[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(12):1470-1472(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract11844.shtml
    [11] NAVARRO R. Performance of an electro-hydrostatic actuator on the F-18 systems research aircraft: NASA/TM-97-206224[R]. Washington, D. C. : NASA, 1997.
    [12] ANDERSSON J, KRUS P, NILSSON K, et al. Modelling and simulation of heat generation in electro-hydrostatic actuation systems[C]//Proceedings of the 4th JHPS International Symposium on Fluid Power, 1999: 537-542.
    [13] JOHANSSON B, ANDERSSON J, KRUS P. Thermal modelling of an electro-hydrostatic actuation system[C]//Proceedings of the International Conference on Recent Advances in Aerospace Actuation Systems and Components, 2001: 48-53.
    [14] ENGELHARDT J. Thermal simulation of an aircraft fluid power system with hydraulic-electrical power conversion units[C]//Proceedings of the 1st FPNI-PhD Symposium, 2000: 435-448.
    [15] LI K, LV Z, LU K, et al. Thermal-hydraulic modeling and simulation of piston pump in electro-hydrostatic actuator system[C]//2015 International Conference on Fluid Power and Mechatronics (FPM). Piscataway, NJ: IEEE Press, 2015: 1097-1101.
    [16] 盛敬超.液压流体力学[M].北京:机械工业出版社, 1980.

    SHENG J C.Hydraulic fluid mechanics[M].Beijing:China Machine Press, 1980(in Chinese).
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  91
  • PDF下载量:  533
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 录用日期:  2017-11-23
  • 网络出版日期:  2018-08-20

目录

    /

    返回文章
    返回
    常见问答