留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间两点的视觉自主着陆导引算法设计

魏祥灰 唐超颖 王彪

魏祥灰, 唐超颖, 王彪等 . 基于空间两点的视觉自主着陆导引算法设计[J]. 北京航空航天大学学报, 2019, 45(2): 357-365. doi: 10.13700/j.bh.1001-5965.2018.0285
引用本文: 魏祥灰, 唐超颖, 王彪等 . 基于空间两点的视觉自主着陆导引算法设计[J]. 北京航空航天大学学报, 2019, 45(2): 357-365. doi: 10.13700/j.bh.1001-5965.2018.0285
WEI Xianghui, TANG Chaoying, WANG Biaoet al. Visual guidance algorithm design for autonomous landing based on two points in space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 357-365. doi: 10.13700/j.bh.1001-5965.2018.0285(in Chinese)
Citation: WEI Xianghui, TANG Chaoying, WANG Biaoet al. Visual guidance algorithm design for autonomous landing based on two points in space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 357-365. doi: 10.13700/j.bh.1001-5965.2018.0285(in Chinese)

基于空间两点的视觉自主着陆导引算法设计

doi: 10.13700/j.bh.1001-5965.2018.0285
基金项目: 

南京航空航天大学研究生创新基地(实验室)开放基金-中央高校基本科研业务费专项资金 kfjj20170302

详细信息
    作者简介:

    魏祥灰  女, 硕士研究生。主要研究方向:无人机视觉导引

    唐超颖  女, 博士, 副教授, 硕士生导师。主要研究方向:导引控制与图像处理

    王彪  男, 博士, 副教授, 硕士生导师。主要研究方向:飞行器控制与视觉导引

    通讯作者:

    王彪, E-mail: wangbiao@nuaa.edu.cn

  • 中图分类号: V249.3

Visual guidance algorithm design for autonomous landing based on two points in space

Funds: 

Graduate Innovation Center in NUAA-the Fundamental Research Funds for the Central Universities kfjj20170302

More Information
  • 摘要:

    为提高无人机着陆效率,从着陆速度向量场和导引律设计两方面研究改进。首先,基于椭圆设计速度向量场,实现飞行路程更短、机动性能要求更低的着陆轨迹。然后,基于像素坐标系与机体坐标系的关系,设计无人机的航迹方位角指令;以椭圆切线方向为参考,结合合作矢量特征,设计航迹倾斜角指令;利用图像信息,设计速度大小指令。最后,理论比较了传统轨迹与提出轨迹对方向机动性性能的要求,给出了轨迹参数与无人机方向机动性性能的关系。利用Simulink搭建系统仿真平台,计算满足要求的合作矢量特征。结果表明,无人机以曲线轨迹准确软着陆到目标,满足实际运用的需要。

     

  • 图 1  椭圆弧示意图

    Figure 1.  Schematic diagram of elliptic arc

    图 2  速度向量场示意图

    Figure 2.  Schematic diagram of velocity vector field

    图 3  本文导引律的结构框图

    Figure 3.  Structure diagram of proposed guidance law

    图 4  机体坐标系与像素坐标系的关系示意图

    Figure 4.  Schematic diagram of relationship between body coordinate system and image coordinate system

    图 5  无人机与合作特征的空间关系

    Figure 5.  Spatial relationship between UAV and cooperative characteristics

    图 6  β与图像信息之间的关系示意图

    Figure 6.  Schematic diagram of relationship between β and image information

    图 7  着陆轨迹的比较

    Figure 7.  Comparison of landing trajectory

    图 8  系统仿真平台结构框图

    Figure 8.  Structure diagram of system simulation platform

    图 9  无人机着陆过程仿真示意图

    Figure 9.  Schematic diagram of UAV landing process simulation

    图 10  导引指令随时间的变化

    Figure 10.  Variation of guidance command with time

    图 11  响应随时间的变化

    Figure 11.  Variation of response with time

    图 12  β角分析

    Figure 12.  β angle analysis

    图 13  α角分析

    Figure 13.  α angle analysis

  • [1] LIN S, GARRATT M A, LAMBERT A J.Monocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environment[J]. Autonomous Robots, 2017, 41(4):881-901. doi: 10.1007/s10514-016-9564-2
    [2] ARAAR O, AOUF N, VITANOV I.Vision based autonomous landing of multirotor UAV on moving platform[J]. Journal of Intelligent & Robotic Systems, 2017, 85(2):369-384. doi: 10.1007/s10846-016-0399-z
    [3] SHIRZADEH M, ASL H J, AMIRKHANI A, et al.Vision-based control of a quadrotor utilizing artificial neural networks for tracking of moving targets[J]. Engineering Applications of Artificial Intelligence, 2017, 58:34-48. doi: 10.1016/j.engappai.2016.10.016
    [4] PRAKASH R O, SARAVANAN C.Autonomous robust helipad detection algorithm using computer vision[C]//International Conference on Electrical, Electronics, and Optimization Techniques.Piscataway, NJ: IEEE Press, 2016: 2599-2604.
    [5] TANG D, CHEN Y, KOU K.Navigation method based on the solution to PnP problem for autonomous landing of UAV[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference.Piscataway, NJ: IEEE Press, 2014, 2315-2320.
    [6] 陈茂武.基于视觉的无人机自动着陆导航技术与系统研究[D].南京: 南京航空航天大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10287-1017876045.htm

    CHEN M W.Research on vision based automatic landing guidance technology and system for UAVs[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1017876045.htm
    [7] MINGU K, YOUDAN K.Multiple UAVs nonlinear guidance laws for stationary target observation with waypoint incidence angle constraint[J]. International Journal of Aeronautical and Space Sciences, 2013, 14(1):67-74. doi: 10.5139/IJASS.2013.14.1.67
    [8] MINGU K, YOUDAN K.Error dynamics-based Lyapunov guidance law for stationary target observation[J]. IFAC Proceedings Volumes, 2011, 44(1):2042-2047. doi: 10.3182/20110828-6-IT-1002.00129
    [9] MEDEIROS F L L, GOMES V C F, AQUINO M R C D, et al.A computer vision system for guidance of vtol uavs autonomous landing[C]//2015 Brazilian Conference on Intelligent Systems(BRACIS).Piacataway, NJ: IEEE Press, 2015: 333-338.
    [10] YANG S, SCHERER S A, ZELL A.An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle[J]. Journal of Intelligent & Robotic Systems, 2013, 69(1-4):499-515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5df7158da01f5eecad7481fdf8555d08
    [11] GAUTAM A, SUJIT P B, SARIPALLI S.A survey of autonomous landing techniques for UAVs[C]//International Conference on Unmanned Aircraft Systems.Piscataway, NJ: IEEE Press, 2014: 1210-1218.
    [12] JUNG W, LIM S, LEE D, et al.Unmanned aircraft vector field path following with arrival angle control[J]. Journal of Intelligent & Robotic Systems, 2016, 84(1-4):311-325. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c58b520a7d5c09c1266009e2a38a463e
    [13] MIN B M, TAHK M J, SHIM D H, et al.Guidance law for vision-based automatic landing of UAV[J]. International Journal of Aeronautical and Space Sciences, 2007, 8(1):46-53. doi: 10.5139/IJASS.2007.8.1.046
    [14] 牛轶峰, 凌黎华.无人机规避或跟踪空中目标的自适应运动导引方法[J].国防科技大学学报, 2017, 39(4):116-124. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201704018

    NIU Y F, LING L H.Adaptive motion guidance method of avoiding or tracking aerial targets for unmanned aerial vehicles[J]. Journal of National University of Defense Technology, 2017, 39(4):116-124(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201704018
    [15] RATNOO A, GHOSE D.Impact angle constrained guidance against nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):269-275. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216024929/
    [16] LEE H, JUNG S, SHIM D H.Vision-based UAV landing on the moving vehicle[C]//2016 International Conference on Unmanned Aircraft Systems(Icuas).Piscataway, NJ: IEEE Press, 2016: 1-7.
    [17] CHU H P, MA L, SHAO Z J.Trajectory optimization and online re-planning for vertical takeoff vertical landing on lunar surface[C]//Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference.Piscataway, NJ: IEEE Press, 2016: 2999-3004.
    [18] 张炳亮.基于三维合作目标的视觉探测与导引算法研究[D].南京: 南京航空航天大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10287-1017875076.htm

    ZHANG B L.Research on visual detection and guidance algorithm based on 3D cooperative target[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1017875076.htm
  • 加载中
图(13)
计量
  • 文章访问数:  716
  • HTML全文浏览量:  41
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-21
  • 录用日期:  2018-09-19
  • 网络出版日期:  2019-02-20

目录

    /

    返回文章
    返回
    常见问答