留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于凝结实验平台的音速喷嘴凝结现象研究

王超 林大烜 丁红兵 王刚 安海骄

王超, 林大烜, 丁红兵, 等 . 基于凝结实验平台的音速喷嘴凝结现象研究[J]. 北京航空航天大学学报, 2017, 43(11): 2232-2239. doi: 10.13700/j.bh.1001-5965.2017.0074
引用本文: 王超, 林大烜, 丁红兵, 等 . 基于凝结实验平台的音速喷嘴凝结现象研究[J]. 北京航空航天大学学报, 2017, 43(11): 2232-2239. doi: 10.13700/j.bh.1001-5965.2017.0074
WANG Chao, LIN Daxuan, DING Hongbing, et al. Study on condensation in sonic nozzle based on experimental condensation apparatus[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2232-2239. doi: 10.13700/j.bh.1001-5965.2017.0074(in Chinese)
Citation: WANG Chao, LIN Daxuan, DING Hongbing, et al. Study on condensation in sonic nozzle based on experimental condensation apparatus[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2232-2239. doi: 10.13700/j.bh.1001-5965.2017.0074(in Chinese)

基于凝结实验平台的音速喷嘴凝结现象研究

doi: 10.13700/j.bh.1001-5965.2017.0074
基金项目: 

国家自然科学基金 61627803

国家自然科学基金 51506148

国家自然科学基金 61673291

天津市自然科学基金 16JCQNJC03700

天津市重点实验室基金 TKLPMC-201611

详细信息
    作者简介:

    王超 男, 博士, 教授。主要研究方向:电学层析成像、多相流测量和生物阻抗检测

    丁红兵 男, 博士, 讲师。主要研究方向:多相流测量、气体流量传感器

    通讯作者:

    丁红兵, E-mail: hbding@tju.edu.cn

  • 中图分类号: TH814

Study on condensation in sonic nozzle based on experimental condensation apparatus

Funds: 

National Natural Science Foundation of China 61627803

National Natural Science Foundation of China 51506148

National Natural Science Foundation of China 61673291

Natural Science Foundation of Tianjin 16JCQNJC03700

Research Fund of Tianjin Key Laboratory TKLPMC-201611

More Information
  • 摘要:

    音速喷嘴中流动的蒸汽或含湿气体由于自身的温降而发生凝结现象,对音速喷嘴的计量会产生一定的影响。针对音速喷嘴凝结现象和自激振荡的复杂变化情况,利用一套凝结实验平台研究了音速喷嘴内湿空气凝结现象,得到了不同条件的喷嘴沿程压力,并建立了凝结流动Eulerian两相模型,对凝结现象的影响因素进行了数值分析,使实验结果得到了验证和补充。结果表明,载气的压力、温度、湿度会对凝结产生比较大的影响。凝结发生位置伴随载气温度、湿度的提高而前移,强度有所增大。随着载气压力的增大,凝结发生位置前移,但是强度相对减弱。自激振荡的频率与载气湿度、温度呈正相关,与载气压力呈负相关,振幅与载气的压力、温度、湿度均呈正相关。

     

  • 图 1  音速喷嘴结构

    Figure 1.  Sonic nozzle structure

    图 2  Wilson线在焓熵(h-s)图中的走势

    Figure 2.  Tendency of Wilson line in an enthalpy-entropy(h-s) map

    图 3  音速喷嘴中膨胀凝结过程

    Figure 3.  Expansion and condensation process in sonic nozzle

    图 4  凝结实验平台结构

    Figure 4.  Structure of experimental condensation apparatus

    图 5  高压雾化装置

    Figure 5.  High-pressure atomization generator

    图 6  实验喷嘴结构和尺寸

    Figure 6.  Structure and size of experimental nozzle

    图 7  沿程压力采集系统

    Figure 7.  Acquisition system of pressure distribution at nozzle wall

    图 8  CFD仿真与实验数据对比

    Figure 8.  Comparison between CFD simulation and experimental data

    图 9  不同入口湿度下喷嘴壁面压力分布

    Figure 9.  Pressure distribution at nozzle wall with different inlet humidity

    图 10  不同入口温度下喷嘴壁面压力分布

    Figure 10.  Pressure distribution at nozzle wall with different inlet temperatures

    图 11  不同入口压力下喷嘴壁面压力分布

    Figure 11.  Pressure distribution at nozzle wall with different inlet pressure

    图 12  不同入口压力下喷嘴壁面压力分布(CFD)

    Figure 12.  Pressure distribution at nozzle wall with different inlet pressure (CFD)

    图 13  不同入口温度下喷嘴壁面压力分布(CFD)

    Figure 13.  Pressure distribution at nozzle wall with different inlet temperatures (CFD)

    图 14  动态压力测试

    Figure 14.  Dynamic pressure test

    图 15  不同自激振荡模式下频率和幅值与过冷度关系

    Figure 15.  Relationship between frequency and amplitude and degree of supercooling under different self-oscillation modes

    表  1  网格独立性测试结果

    Table  1.   Grid independence test results

    参数 网格
    (N1×N2)
    质量流量/(kg·s-1) 相对变化量/%
    N1变化
    N2=120
    850×120 0.053 020 379
    900×120 0.053 027 642 0.013 7
    950×120 0.053 028 746 0.002 1
    N1 = 900
    N2变化
    900×100 0.053 035 973
    900×120 0.053 027 642 0.015 7
    900×140 0.053 026 096 0.002 9
    下载: 导出CSV
  • [1] 汪欢欢. 基于音速喷嘴的气体流量标准装置的研制[D]. 广州: 华南理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10561-1013319445.htm

    WANG H H.The development of gas flow standard device based on sonic nozzle[D].Guangzhou:South China University of Technology, 2013(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10561-1013319445.htm
    [2] 代钦, 魏润杰, 黄湛, 等.超音速喷流DPIV瞬时速度场实验测量[J].北京航空航天大学学报, 2001, 27(6):666-669. http://bhxb.buaa.edu.cn/CN/abstract/abstract10903.shtml

    DAI Q, WEI R J, HUANG Z, et al.Experimental study of supersonic jet flow using DPIV[J].Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(6):666-669(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract10903.shtml
    [3] ASCHENBRENNER A.The influence of humidity on the flow-rate of air through critical flow nozzles[C]//Proceedings of the International Conference on Flow Measurement, 1983:71-74.
    [4] 李春辉, 王池.通过音速喷嘴气体流量的湿度修正方法研究[J].计量学报, 2007, 28(3A):160-164. http://d.wanfangdata.com.cn/Periodical/jlxb982007z1041

    LI C H, WANG C.The humidity correction on the flow through sonic nozzle[J].Acta Metrologica Sinica, 2007, 28(3A):160-164(in Chinese). http://d.wanfangdata.com.cn/Periodical/jlxb982007z1041
    [5] BRITTON C L, CAZON R W, KEGEL K.The critical flow function, C, for humid air[C]//ASME Fluids Engineering Division Summer Meeting.New York:ASME, 1998:No.5309.
    [6] STEWART D G, WATSON J T R, VAIDYA A M.The effect of using atmospheric air in critical flow nozzles[C]//4th International Symposium on Fluid Flow Measurement, 1999:27-30.
    [7] LIM J M, YOON B H, OH Y K, et al.The humidity effect on air flow rates in a critical flow venture nozzle[J].Flow Measurement and Instrumentation, 2011, 22(5):402-405. doi: 10.1016/j.flowmeasinst.2011.06.004
    [8] CHAHINE K, BALLICO M.Evaluation of the effect of relative humidity of air on the coefficients of critical flow venturi nozzles[C]//16th International Flow Measurement Conference, 2013:24-26.
    [9] LI C H, MICKAN B.The humidity effect on the calibration of discharge coefficient of sonic nozzle by means of pVTt facility[C]//Proceedings of 8th International Symposium on Fluid Flow Measurement, 2012:No.302.
    [10] YOUNG J B.The spontaneous condensation of steam in supersonic nozzles[J].Physico Chemical Hydrodynamics, 1982, 3(1):57-82. https://www.researchgate.net/publication/279564905_The_spontaneous_condensation_of_steam_in_supersonic_nozzles
    [11] KANE D, FISENKO S P, RUSYNIAK M.The effect of carrier gas pressure on vapor phase nucleation experiments using a thermal diffusion cloud chamber[J].Journal of Chemical Physics, 1999, 111(18):8496-8502. doi: 10.1063/1.480190
    [12] WEGENER P P, POURING A A.Experiments on condensation of water vapor by homogeneous nucleation in nozzles[J].The Physics of Fluids, 1964, 7(3):352-361. doi: 10.1063/1.1711206
    [13] 蔡颐年, 王乃宁.湿蒸汽两相流[M].西安:西安交通大学出版社, 1985.

    CAI Y N, WANG N N.Wet steam two-phase flow[M]. Xi'an:Xi'an Jiaotong University Press, 1985(in Chinese).
    [14] 马庆芬. 旋转超音速凝结流动及应用技术研究[D]. 大连: 大连理工大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10141-2009116110.htm

    MA Q F.Study on the rotating supersonic condensing flow and application technology[D].Dalian:Dalian University of Technology, 2009(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10141-2009116110.htm
    [15] AVETISSIAN A R, PHILIPPOV G A, ZAICHIK L I.Effects of turbulence and inlet moisture on two-phase spontaneously condensing flows in transonic nozzles[J].International Journal of Heat and Mass Transfer, 2008, 51(17):4195-4203. https://www.sciencedirect.com/science/article/pii/S0017931008000628
    [16] DYKAS S, WROBLEWSKI W.Numerical modelling of steam condensing flow in low and high-pressure nozzles[J].International Journal of Heat and Mass Transfer, 2012, 55(21):6191-6199. http://www.sciencedirect.com/science/article/pii/S0017931012004693
    [17] WANG C, WANG L, ZHAO H X, et al.Effects of superheated steam on non-equilibrium condensation in ejector primary nozzle[J]. International Journal of Refrigeration, 2016, 67:214-226. doi: 10.1016/j.ijrefrig.2016.02.022
    [18] WEGENER P P, CAGLIOSTRO D J.Periodic nozzle flow with heat addition[J].Combustion Science and Technology, 1973, 6(5):269-277. doi: 10.1080/00102207308952329
    [19] SKILLING S A.An analysis of the condensation phenomena occurring in wet steam turbine[D].Birmingham:University of Birmingham, 1987. http://www.mysciencework.com/publication/show/analysis-condensation-phenomena-occurring-wet-steam-turbines-bbbf1d90
    [20] ADAM S, SCHNERR G.Instabilities and bifurcation of non-equilibrium two-phase flows[J].Journal of Fluid Mechanics, 1997, 348(1):1-28.
    [21] 吴晓明, 李国君, 李亮, 等.湿蒸汽凝结流中自激振荡模式的数值模拟[J].动力工程, 2009, 29(8):747-751. http://d.wanfangdata.com.cn/Periodical/dlgc200908009

    WU X M, LI G J, LI L, et al.Numerical simulation of self-excited oscillation patterns in wet steam flow with condensation[J].Journal of Power Engineering, 2009, 29(8):747-751(in Chinese). http://d.wanfangdata.com.cn/Periodical/dlgc200908009
    [22] International Standard Organization. Measurement of gas flow by means of critical flow venturi nozzles:ISO9300-2005[S].Geneva:International Standard Organization, 2005.
    [23] WANG C, DING H B, ZHAO Y K, et al.Sensor system for unsteady flow characteristics in a sonic nozzle with vapor condensation[C]//2014 IEEE International Instrumentation and Measurement Technology Conference.Piscataway, NJ:IEEE Press, 2014, 5:772-775. http://ieeexplore.ieee.org/document/6860847/
    [24] DING H B, WANG C, CHEN C.Experimental and numerical studies on self-excited periodic oscillation of vapor condensation in a sonic nozzle[J].Experimental Thermal and Fluid Science, 2015, 68:288-299. doi: 10.1016/j.expthermflusci.2015.05.002
    [25] 丁红兵. 音速喷嘴边界层发展及凝结现象研究[D]. 天津: 天津大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183408.htm

    DING H B. Boundary layer development and vapor condensation in sonic nozzle[D].Tianjin:Tianjin University, 2014(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183408.htm
    [26] 金如山.喷嘴雾化研究[J].北京航空航天大学学报, 1989(3):69-78. http://d.wanfangdata.com.cn/Periodical/jxgcxb201702025

    JIN R S.Atomization study[J].Journal of Beijing University of Aeronautics and Astronautics, 1989(3):69-78(in Chinese). http://d.wanfangdata.com.cn/Periodical/jxgcxb201702025
    [27] WANG C, DING H B, LIU Q, et al.The dynamic compensation of temperature sensors in sonic nozzle airflow standard facilities based on method of positive pressure[C]//2012 IEEE International Instrumentation and Measurement Technology Conference. Piscataway, NJ:IEEE Press, 2012:2005-2009. The dynamic compensation of temperature sensors in sonic nozzle airflow standard facilities based on method of positive pressure
    [28] 孙铁志, 魏英杰, 王聪, 等.通气位置对潜射航行流体动力特性影响分析[J].北京航空航天大学学报, 2013, 39(10):1303-1308. http://bhxb.buaa.edu.cn/CN/abstract/abstract12743.shtml

    SUN T Z, WEI Y J, WANG C, et al.Analysis of the effect of ventilation positions on hydrodynamic characteristics of submarine-launched vehicle[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10):1303-1308(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12743.shtml
    [29] 王超, 王刚, 丁红兵.音速喷嘴内水蒸汽自发凝结流动自激振荡和分歧现象研究[J].天津大学学报(自然科学与工程技术版), 2016, 49(11):1113-1120. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjdx201611001&dbname=CJFD&dbcode=CJFQ

    WANG C, WANG G, DING H B.Research of spontaneous condensation steam flow with self-excited oscillation and bifurcation phenomenon in sonic nozzles[J].Journal of Tianjin University(Science and Technology), 2016, 49(11):1113-1120(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjdx201611001&dbname=CJFD&dbcode=CJFQ
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  119
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-16
  • 录用日期:  2017-05-19
  • 网络出版日期:  2017-11-20

目录

    /

    返回文章
    返回
    常见问答