留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CT的泡沫铝三维细观模型重建及应用

李侯贞强 张亚栋 张锦华 姜春琳

李侯贞强, 张亚栋, 张锦华, 等 . 基于CT的泡沫铝三维细观模型重建及应用[J]. 北京航空航天大学学报, 2018, 44(1): 160-168. doi: 10.13700/j.bh.1001-5965.2016.0959
引用本文: 李侯贞强, 张亚栋, 张锦华, 等 . 基于CT的泡沫铝三维细观模型重建及应用[J]. 北京航空航天大学学报, 2018, 44(1): 160-168. doi: 10.13700/j.bh.1001-5965.2016.0959
LI Houzhenqiang, ZHANG Yadong, ZHANG Jinhua, et al. Reconstruction and application of three-dimensional mesoscopic model of aluminum foam based on CT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 160-168. doi: 10.13700/j.bh.1001-5965.2016.0959(in Chinese)
Citation: LI Houzhenqiang, ZHANG Yadong, ZHANG Jinhua, et al. Reconstruction and application of three-dimensional mesoscopic model of aluminum foam based on CT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 160-168. doi: 10.13700/j.bh.1001-5965.2016.0959(in Chinese)

基于CT的泡沫铝三维细观模型重建及应用

doi: 10.13700/j.bh.1001-5965.2016.0959
基金项目: 

国家重点研发计划 2014YFC0305200

国家自然科学基金 51478464

国家自然科学基金 51678566

国家重大科学仪器设备开发专项 2014YQ24044509

详细信息
    作者简介:

    李侯贞强  男, 硕士研究生。主要研究方向:材料细观力学

    张亚栋  男, 教授, 硕士生导师。主要研究方向:防护工程

    通讯作者:

    张亚栋, E-mail: zhydjs@139.com

  • 中图分类号: TU311;V256

Reconstruction and application of three-dimensional mesoscopic model of aluminum foam based on CT

Funds: 

National Key R&D Program of China 2014YFC0305200

National Natural Science Foundation of China 51478464

National Natural Science Foundation of China 51678566

National Key Scientific Instrument and Equipment Development Project of China 2014YQ24044509

More Information
  • 摘要:

    为了建立更加真实的闭孔泡沫铝三维细观分析模型,提出了一种基于计算机层析成像(CT)的有限元模型构建新方法。首先,对CT扫描得到的泡沫铝试件的扫描图像进行Otsu算法分析,确定了区分基体材料和空气的灰度最佳阈值。其次,基于映射网格思想直接从扫描图像生成了试件的有限元分析模型,实现了泡沫金属三维细观分析模型的重建。最后,以此为基础进行了泡沫铝试件准静态压缩和动态冲击试验的数值模拟,结果表明,准静态压缩下泡沫铝的内部变形随机分布于整个试件,且与其三维结构密切相关;而动态冲击下变形在冲击端附近首先发生,体现出显著的局部化效应。本文方法能真实地描述泡沫金属内部的细观结构,实现了对泡沫铝试件在准静态压缩和动态冲击作用下的受力、变形与破坏过程更加详细的模拟分析。

     

  • 图 1  闭孔泡沫铝试件

    Figure 1.  Closed-cell aluminum foam specimens

    图 2  CT扫描得到的泡沫铝灰度图像

    Figure 2.  Gray images of aluminum foam by CT scanning

    图 3  二值化图像与有限元模型的对比

    Figure 3.  Comparison between binary image and finite element model

    图 4  闭孔泡沫铝三维细观有限元模型

    Figure 4.  Three-dimensional mesoscopic finite element model of closed-cell aluminum foam

    图 5  有限元模型不同截面和灰度图像对比

    Figure 5.  Comparison of different section and gray images of finite element model

    图 6  泡沫铝准静态压缩数值分析模型

    Figure 6.  Numerical analysis model of aluminum foam under quasi-static compression

    图 7  准静态压缩试验与模拟的名义应力-应变曲线

    Figure 7.  Nominal stress-strain curves of test and simulation under quasi-static compression

    图 8  准静态加载下试件及胞壁的变形形态

    Figure 8.  Deformation morphology of specimen and cell-wall under quasi-static loading

    图 9  动态冲击试验与模拟的应力-时间曲线

    Figure 9.  Comparison between test and simulation results under impact loading

    图 10  动态冲击加载下试件内部的Mises应力分布

    Figure 10.  Mises stress distribution inside specimen under dynamic impact loading

    图 11  试件冲击端、支撑端的平均应力-时程曲线

    Figure 11.  Average stress-time history curves at loading and supporting ends of specimen

  • [1] GIBSON L J, ASHBY M F.Cellular solids:Structure and properties[M].Cambridge:Cambridge University Press, 1999:6-11.
    [2] BANHART J.Manufacture characterization and application of cellular metals and metal foams[J].Progress in Materials Science, 2001, 46(6):559-632. doi: 10.1016/S0079-6425(00)00002-5
    [3] MAGNUCKA B E, MAGNUCKI K. Effective design of a sandwich beam with a metal foam core[J].Thin-Walled Structures, 2007, 45(4):432-438. doi: 10.1016/j.tws.2007.03.005
    [4] YUJ L, LI J R, HU S S.Strain-rate effect and micro-structural optimization of cellular metals[J].Mechanics of Materials, 2006, 38(1):160-170. https://www.sciencedirect.com/science/article/pii/S0142941810001455
    [5] DESHPANDE V S, FLECK N A.High strain rate compressive behavior of aluminum alloy foams[J].International Journal of Impact Engineering, 2000, 24(3):277-298. doi: 10.1016/S0734-743X(99)00153-0
    [6] MEGUID S A, CHEON S S, EI-ABBASI N.FE modelling of deformation localization in metallic foams[J].Finite Elements in Analysis and Design, 2002, 38(7):631-643. doi: 10.1016/S0168-874X(01)00096-8
    [7] NAMMI S K, MYLER P, EDWARDS G.Finite element analysis of closed-cell aluminum foam under quasi-static loading[J].Materials & Design, 2010, 31(2):712-722.
    [8] ZHU H X, KNOTT J F, MILLS N J.Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells[J].Journal of the Mechanics and Physics of Solids, 1997, 45(3):319-343. doi: 10.1016/S0022-5096(96)00090-7
    [9] DE GIORGI M, CAROFALO A, DATTOMA V, et al.Aluminum foams structural modelling[J].Computers & Structures, 2010, 88(1):25-35.
    [10] 刘培生.关于多孔材料的新模型[J].材料研究学报, 2009, 20(1):64-68. http://cn.comsol.com/release/5.3a/nonlinear-structural-materials-module

    LIU P S.A new model for porous materials[J].Chinese Journal of Materials Research, 2009, 20(1):64-68(in Chinese). http://cn.comsol.com/release/5.3a/nonlinear-structural-materials-module
    [11] 刘培生, 夏凤金, 罗军.多孔材料模型分析[J].材料工程, 2009(7):83-87. http://www.cqvip.com/qk/94928X/200901/29673865.html

    LIU P S, XIA F J, LUO J.Analyses of the classical model for porous materials[J].Journal of Material Engineering, 2009(7):83-87(in Chinese). http://www.cqvip.com/qk/94928X/200901/29673865.html
    [12] ZHANG C Y, TANG L Q, YANG B, et al.Meso-mechanical study of collapse and fracture behaviors of closed-cell metallic foams[J].Computational Materials Science, 2013, 79:45-51. doi: 10.1016/j.commatsci.2013.05.046
    [13] ZHENG Z J, WANG C, YU J L, et al.Dynamic stress-strain states for metal foams using a 3D cellular model[J].Journal of the Mechanics and Physics of Solids, 2014, 72:93-114. doi: 10.1016/j.jmps.2014.07.013
    [14] LI Z, ZHANG J, FAN J, et al.On crushing response of the three-dimensional closed-cell foam based on Voronoi model[J].Mechanics of Materials, 2014, 68:85-94. doi: 10.1016/j.mechmat.2013.08.009
    [15] CAROFALO A, DE GIORGI M, MORABITO A, et al.Geometric modelling of metallic foams[J].Engineering Computations, 2013, 30(7):924-935. doi: 10.1108/EC-06-2011-0070
    [16] FANG Q, ZHANG J H, LIU J C, et al.Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact[J].Composite Structures, 2015, 124:409-420. doi: 10.1016/j.compstruct.2015.01.001
    [17] FANG Q, ZHANG J H, ZHANG Y D, et al.A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings[J].International Journal of Impact Engineering, 2015, 82:103-112. doi: 10.1016/j.ijimpeng.2014.10.009
    [18] MAIRE E, FAZEKAS A, SALVO L, et al.X-ray tomography applied to the characterization of cellular materials related finite element modeling problems[J].Composites Science and Technology, 2003, 63(16):2431-2443. doi: 10.1016/S0266-3538(03)00276-8
    [19] MCDONALD S A, MMMMERY P M, JOHNSON G, et al.Characterization of the three-dimensional structure of a metallic foam during compressive deformation[J].Journal of Microscopy, 2006, 223(2):150-158. doi: 10.1111/jmi.2006.223.issue-2
    [20] JEON I, ASAHINA T, KANG K J, et al.Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography[J].Mechanics of Materials, 2010, 42(3):227-236. doi: 10.1016/j.mechmat.2010.01.003
    [21] SUN Y L, LI Q M, LOWE T, et al.Investigation of strain-rate effect on the compressive behavior of closed-cell aluminum foam by 3D image-based modelling[J].Materials & Design, 2016, 89:215-224. https://www.sciencedirect.com/science/article/pii/S0921509313012306
    [22] JEON I, ASAHINA T.The effect of structural defects on the compressive behavior of closed-cell Al foam[J].Acta Materialia, 2005, 53(12):3415-3423. doi: 10.1016/j.actamat.2005.04.010
    [23] TURBELL H.Cone-beam reconstruction using filtered back projection[D].Linkping:Linkping University, 2001.
    [24] 韩思奇, 王蕾.图像分割的阈值法综述[J].系统工程与电子技术, 2002, 24(6):91-94. https://www.wenkuxiazai.com/doc/fbca569a51e79b89680226c5.html

    HAN S Q, WANG L.A survey of thresholding methods for image segmentation[J].Systems Engineering and Electronics, 2002, 24(6):91-94(in Chinese). https://www.wenkuxiazai.com/doc/fbca569a51e79b89680226c5.html
    [25] MCDONALD S A, MMMMERY P M, JOHNSON G, et al.Characterization of the three-dimensional structure of a metallic foam during compressive deformation[J].Journal of Microscopy, 2006, 223(Pt 2):150-158.
    [26] HALLQUISTJ O.LS-DYNA keyword user's manual[Z].Livermore:Livermore Software Technology Corporation, 2015.
    [27] JEON I, KATOU K, SONODA T, et al.Cell wall mechanical properties of closed-cell Al foam[J].Mechanics of Materials, 2009, 41(1):60-73. doi: 10.1016/j.mechmat.2008.08.002
    [28] 李妍妍, 郑志军, 虞吉林, 等.闭孔泡沫金属变形模式的有限元分析[J].爆炸与冲击, 2014, 34(4):464-470. doi: 10.11883/1001-1455(2014)04-0464-07

    LI Y Y, ZHENG Z J, YU J L, et al.Finite element analysis on deformation modes of closed-cell metallic foam[J].Explosion and Shock Waves, 2014, 34(4):464-470(in Chinese). doi: 10.11883/1001-1455(2014)04-0464-07
  • 加载中
图(11)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  68
  • PDF下载量:  538
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-21
  • 录用日期:  2017-03-17
  • 网络出版日期:  2018-01-20

目录

    /

    返回文章
    返回
    常见问答