留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冷库环境下的涡扇发动机叶片冰脱落试验

陈功 杨坤 王利平 孔维梁 王福新

陈功, 杨坤, 王利平, 等 . 基于冷库环境下的涡扇发动机叶片冰脱落试验[J]. 北京航空航天大学学报, 2018, 44(10): 2106-2114. doi: 10.13700/j.bh.1001-5965.2018.0035
引用本文: 陈功, 杨坤, 王利平, 等 . 基于冷库环境下的涡扇发动机叶片冰脱落试验[J]. 北京航空航天大学学报, 2018, 44(10): 2106-2114. doi: 10.13700/j.bh.1001-5965.2018.0035
CHEN Gong, YANG Kun, WANG Liping, et al. Test of ice shedding on turbofan engine blade in refrigeratory environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2106-2114. doi: 10.13700/j.bh.1001-5965.2018.0035(in Chinese)
Citation: CHEN Gong, YANG Kun, WANG Liping, et al. Test of ice shedding on turbofan engine blade in refrigeratory environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2106-2114. doi: 10.13700/j.bh.1001-5965.2018.0035(in Chinese)

基于冷库环境下的涡扇发动机叶片冰脱落试验

doi: 10.13700/j.bh.1001-5965.2018.0035
基金项目: 

上海市科委基础研究领域项目 14DJ1400302

详细信息
    作者简介:

    陈功  男, 博士研究生, 工程师。主要研究方向:与空气动力学、航空发动机相关的仿真计算及风洞试验技术等

    王福新  男, 博士, 研究员。主要研究方向:飞行器设计、飞机结冰、防除冰、非定常流体力学、直升机空气动力学等

    通讯作者:

    王福新, E-mail:fuxinwang@sjtu.edu.cn

  • 中图分类号: V216.5+1

Test of ice shedding on turbofan engine blade in refrigeratory environment

Funds: 

Shanghai Science and Technology Committe Foundamental Research Project 14DJ1400302

More Information
  • 摘要:

    发动机结冰脱落现象因其随机性和复杂性很难通过计算仿真获得可靠的结果,而冰风洞试验又因其高昂的使用成本限制了该方法的普及。为此建立了一个兼顾可行性及经济性,同时具有一定可靠性的试验方法,即借助冷库环境并利用斜流风机、喷雾耙、温度调节系统等模拟飞行过程中可能面临的结冰环境;以某型号民用飞机涡扇发动机缩比带动力模型为对象,研究不同工况下叶片结冰及冰脱落的特性和规律。在正式试验之前,通过热线风速仪、喷雾激光粒度仪、标准冰刀和金属格栅分别对来流速度、流场中液态水含量、水滴的平均粒径进行了标定。为克服云雾循环/聚集的问题,开发了云雾吸附系统,便于在封闭的冷库环境中维持流场的稳定性。试验结果表明:当转速为2 400 r/min不变时,随着环境温度的降低,冰脱落所需的时间及剩余冰的特征长度均先减小后增大,其拐点出现在-3.5~-5℃的区间内;当环境温度为-7℃不变时,叶片绕转轴的转速越大,冰脱落所需的时间及剩余冰的特征长度均单调减小。

     

  • 图 1  剩余冰特征长度

    Figure 1.  Residual ice characteristic length

    图 2  试验装置示意图

    Figure 2.  Schematic of test facility

    图 3  驱风系统实物图

    Figure 3.  Wind driving system

    图 4  喷雾耙分布位置

    Figure 4.  Distribution position of water spray

    图 5  发动机简易模拟系统

    Figure 5.  Simple analog system of engine

    图 6  热线风速仪

    Figure 6.  Hot-wire anemometer

    图 7  标准冰刀标定液态水含量

    Figure 7.  Standard ice blade for LWC calibration

    图 8  喷雾均匀度检测装置与结果

    Figure 8.  Spray evenness measurement facility and result

    图 9  叶片结冰—冰脱落过程

    Figure 9.  Process of icing and ice shedding on blade

    图 10  环境温度对冰脱落的影响

    Figure 10.  Effect of environmental temperature on ice shedding

    图 11  叶片转速对冰脱落的影响

    Figure 11.  Effect of blade rotational speed on ice shedding

    表  1  试验条件参数

    Table  1.   Test condition parameters

    参数 设定值
    来流速度V/(m·s-1) 9
    液态水含量LWC/(g·m-3) 1
    水滴平均粒径MVD/μm 30
    环境温度T/℃ -2, -3.5, -5, -7, -9
    叶片转速ω/(r·min-1) 2 400, 2 700, 3 000
    下载: 导出CSV

    表  2  试验车次

    Table  2.   Test matrix

    序号 ω/(r·min-1) T/℃
    1 2 400 -7
    2 2 700 -7
    3 3 000 -7
    4 2 400 -2
    5 2 400 -3.5
    6 2 400 -5
    7 2 400 -9
    下载: 导出CSV

    表  3  不同环境温度下剩余冰特征长度(ω=2 400 r/min)

    Table  3.   Characteristic length of residual ice in different enviromental temperature (ω=2 400 r/min)

    T/℃ Δt/s lc
    -2 427.4 0.735
    -3.5 325.0 0.389
    -5 259.1 0.433
    -7 274.0 0.624
    -9 360.5 0.904
    下载: 导出CSV

    表  4  不同叶片转速下剩余冰特征长度(T=-7℃)

    Table  4.   Characteristic length of residual ice in different blade rotational speed (T=-7℃)

    ω/(r·min-1) Δt/s lc
    2 400 266.31 0.624
    2 700 198.57 0.389
    3 000 134.39 0.368
    下载: 导出CSV
  • [1] AFT.亚航客机失事原因或为结冰导致[N].环球时报, 2015-01-04.

    AFT.Ice may have vaused AirAsia crash[N].Global Times, 2015-01-04(in Chinese).
    [2] 中国民用航空局.中国民用航空规章第25部运输类飞机适航标准: CCAR-25-R4[S].北京: 中国民用航空局, 2011: 217.

    Civil Aviation Administration of China.China civil aviation re-gulation No.25 Airworthiness standards of transport aircraft: CCAR-25-R4[S].Beijing: Civil Aviation Administration of China, 2011: 217(in Chinese).
    [3] 周宏奎, 余放, 杨坤.航空发动机风扇地面慢车关键结冰温度分析[J].科学技术与工程, 2017, 17(21):324-328. doi: 10.3969/j.issn.1671-1815.2017.21.052

    ZHOU H K, YU F, YANG K.Critical icing temperature analysis of aircraft engine fan in ground idle[J].Science Technology and Engineering, 2017, 17(21):324-328(in Chinese). doi: 10.3969/j.issn.1671-1815.2017.21.052
    [4] RYOSUKE H, MAKOTO Y.Numerical simulation on ice shedding phenomena in turbomachinery[J].Journal of Energy and Power Engineering, 2015, 9(1):45-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214505762
    [5] CHEN Y, DONG W, WANG Z L.Numerical simulation of ice shedding from a fan blade[C]//ASME Turbo Expo 2015: Turbine Technical Conference and Exposition.New York: ASME, 2015: V001T01A005.
    [6] 严晓雪, 朱春玲, 王正之.风力机冰脱落轨迹仿真研究[J].计算机仿真, 2015, 32(10):123-127. doi: 10.3969/j.issn.1006-9348.2015.10.027

    YAN X X, ZHU C L, WANG Z Z.Numerical simulation of ice shedding from wind turbine[J].Computer Simulation, 2015, 32(10):123-127(in Chinese). doi: 10.3969/j.issn.1006-9348.2015.10.027
    [7] BRITTON R K.An overview of shed ice impact studies in the NASA Lewice icing research tunnel[C]//AIAA 31st Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 1993: 1-13.
    [8] MASON J G, CHOW P, DAN M F.Understanding ice crystal accretion and shedding phenomenon in jet enginesusing a rig test[J].Journal of Engineering for Gas Turbines and Power, 2011, 133(4):169-178.
    [9] KRAJ A G, BIBEAU E L.Measurement method and results of ice adhesion force on the curved surface of a wind turbine blade[J].Renewable Energy, 2010, 35(4):741-746. doi: 10.1016/j.renene.2009.08.030
    [10] KERMANI M, FARZANEH M.Study of influencing factors on ice shedding from power transmission lines[C]//The 13th International Workshop on Atmospheric Icing of Structures, Andermatt, 2009.
    [11] 李嘉祥, 李宏男, 付兴.输电线路覆冰脱落参数影响研究[J].电力建设, 2016, 37(4):76-83. doi: 10.3969/j.issn.1000-7229.2016.04.012

    LI J X, LI H N, FU X.Ice-shedding factors of transmission line[J].Electric Power Consturction, 2016, 37(4):76-83(in Chinese). doi: 10.3969/j.issn.1000-7229.2016.04.012
    [12] 高扬.国产新支线飞机发动机自然结冰试飞[J].科学技术与工程, 2017, 17(33):188-192. doi: 10.3969/j.issn.1671-1815.2017.33.027

    GAO Y.The nature icing flight test of domestic advanced region jet aircraft engine[J].Science Technology and Engineering, 2017, 17(33):188-192(in Chinese). doi: 10.3969/j.issn.1671-1815.2017.33.027
    [13] STEFANIA T, ANTONI C, AMIRFAZLI A, et al.Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades[J].Cold Regions Science and Technology, 2014, 100:50-58. doi: 10.1016/j.coldregions.2013.12.009
    [14] 朱春玲, 朱程香.飞机的结冰及防护[M].北京:科学出版社, 2016:21-23.

    ZHU C L, ZHU C X.Aircraft icing and its protection[M].Beijing:Science Press, 2016:21-23(in Chinese).
    [15] 周峰, 张淼, 黄玮.二元翼型结冰数值模拟研究[J].民用飞机设计与研究, 2009(4):4-7. doi: 10.3969/j.issn.1674-9804.2009.04.002

    ZHOU F, ZHANG M, HUANG W.Icing accretion simulation research for 2D airfoil[J].Civil Aircraft Design and Research, 2009(4):4-7(in Chinese). doi: 10.3969/j.issn.1674-9804.2009.04.002
    [16] HAYASHI R, YAMAMOTO M.Numerical simulation on ice shedding phenomenon in turbomachinery[J].Journal of Energy and Power Engineering, 2015(9):45-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214505762
    [17] HAYASHI R, YAMAMOTO M.Modelling of ice shedding phenomenon for engine fan icing[J].Transactions of the JSME, 2014, 80(815):CM0209. https://www.jstage.jst.go.jp/article/transjsme/80/815/80_2014cm0209/_article
    [18] FORTIN G, PERRON J.Ice adhesion models to predict shear stress at shedding[J].Journal of Adhesion Science & Techno-logy, 2012, 26(4-5):523-553. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0227077097
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  448
  • HTML全文浏览量:  47
  • PDF下载量:  410
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-12
  • 录用日期:  2018-04-08
  • 网络出版日期:  2018-10-20

目录

    /

    返回文章
    返回
    常见问答