留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴旋转圆台环隙流动机制及实验研究

鲍锋 曾华轮 邹赫 刘锦生 刘志荣 朱睿

鲍锋, 曾华轮, 邹赫, 等 . 同轴旋转圆台环隙流动机制及实验研究[J]. 北京航空航天大学学报, 2018, 44(8): 1577-1586. doi: 10.13700/j.bh.1001-5965.2017.0614
引用本文: 鲍锋, 曾华轮, 邹赫, 等 . 同轴旋转圆台环隙流动机制及实验研究[J]. 北京航空航天大学学报, 2018, 44(8): 1577-1586. doi: 10.13700/j.bh.1001-5965.2017.0614
BAO Feng, ZENG Hualun, ZOU He, et al. Mechanism and experimental research on fluid flow in annulus of coaxial rotating conical cylinders[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1577-1586. doi: 10.13700/j.bh.1001-5965.2017.0614(in Chinese)
Citation: BAO Feng, ZENG Hualun, ZOU He, et al. Mechanism and experimental research on fluid flow in annulus of coaxial rotating conical cylinders[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1577-1586. doi: 10.13700/j.bh.1001-5965.2017.0614(in Chinese)

同轴旋转圆台环隙流动机制及实验研究

doi: 10.13700/j.bh.1001-5965.2017.0614
基金项目: 

国家自然科学基金 11072206

福建省自然科学基金 2012J01023

详细信息
    作者简介:

    鲍锋  男, 博士, 教授。主要研究方向:飞机尾流控制、流体实验设备设计、车辆船舶减阻、分离控制

    朱睿  男, 博士, 助理教授。主要研究方向:实验流体力学、流动控制、民航安全

    通讯作者:

    朱睿, E-mail: zhurui@xmu.edu.cn

  • 中图分类号: V211.76

Mechanism and experimental research on fluid flow in annulus of coaxial rotating conical cylinders

Funds: 

National Natural Science Foundation of China 11072206

Natural Science Foundation of the Fujian Province, China 2012J01023

More Information
  • 摘要:

    同轴旋转圆台环隙内流体的流动是基于经典的两同轴旋转圆柱环隙内泰勒库特流的一种扩展研究。通过流动显示实验和PIV粒子图像测速技术对圆台环隙的内部流场进行可视化和定量化的研究,分析涡运动的周期性规律,探究圆台环隙内雷诺应力分布和水位高度对流场的影响。研究表明,随着时间的发展,涡列周期性明显且整体在下移,当脉冲数为100脉冲/s时,环隙内形成均匀分布的正反交替的涡;当脉冲数为200~500脉冲/s时,存在快慢交替的分裂周期;在3种水位高度下也都存在明显周期性分裂,只是周期时间和涡的个数不同;平均流场存在上凸型外向流和下凹型内向流2种流态,流态的差异是离心力与静压力双重作用的强弱变化所致;雷诺应力分布中,径向正应力占主导,并主要集中在环隙中部。

     

  • 图 1  实验装置

    Figure 1.  Experimental devices

    图 2  同轴旋转圆台装置内外筒

    Figure 2.  Inner and outer coaxial rotating conical cylinders

    图 3  壁面处涡管形成过程

    Figure 3.  Vortex tube formation process on wall surface

    图 4  子午面涡运动周期

    Figure 4.  Vortex motion period on meridian plane

    图 5  流动显示与PIV速度场

    Figure 5.  Flow visualization and PIV velocity field

    图 6  中线速度分布及涡量分布

    Figure 6.  Velocity and vorticity distributions around midline

    图 7  径向速度分布时序变化

    Figure 7.  Sequential variation of radial velocity distribution

    图 8  涡心运动轨迹(200脉冲/s)

    Figure 8.  Vortex-center motion tracks (200 pulse/s)

    图 9  子午面处涡变化历程(200脉冲/s)

    Figure 9.  Vortex transformation process on meridian plane (200 pulse/s)

    图 10  不同水位高度的涡心分布

    Figure 10.  Vortex-center distribution under different water levels

    图 11  时均流场

    Figure 11.  Time averaged flow field

    图 12  涡动力机制

    Figure 12.  Vortex dynamic mechanism

    图 13  环隙内雷诺应力分布

    Figure 13.  Reynolds stress distribution in annulus

    图 14  中轴线雷诺应力分布

    Figure 14.  Reynolds stress distribution on midline

    表  1  脉冲数和内筒转速匹配

    Table  1.   Matching of pulse number and inner cylinder revolving speed

    脉冲数/(脉冲·s-1)内筒转速/(r·min-1)雷诺数
    h=140 mmh=120 mmh=100 mm
    1001.88214195177
    2003.75428390354
    3005.64642586531
    5009.401 070976885
    下载: 导出CSV

    表  2  螺旋涡运动周期

    Table  2.   Motion period of spiral vortices

    脉冲数/(脉冲·s-1)内筒转速/(r·min-1)快分裂周期/s慢分裂周期/s总分裂周期/s
    1001.88292958
    2003.75173047
    3005.6472532
    5009.4081220
    下载: 导出CSV
  • [1] RAYLEIGH L.On the dynamics of revolving fluids[J].Proceedings of the Royal Society of London, 1917, 93(648):148-154. doi: 10.1098/rspa.1917.0010
    [2] MARGARITIS A, WILKE C R.The rotorfermentor.1.Description of the apparatus, power requirements and mass transfer characteristics[J].Biotechnology and Bioengineering, 1978, 20(5):709-713. doi: 10.1002/(ISSN)1097-0290
    [3] HALLSROM D, LOPEZ-LEIVA M.Description of a rotating ultrafiltration module[J].Desalination, 1978, 24(1-3):273-279. doi: 10.1016-S0011-9164(00)88089-3/
    [4] LOPEZ-LEIVA M.Ultrafiltration at low degrees of concentration polarization:Technical possibilities[J].Desalination, 1980, 35:115-128. doi: 10.1016/S0011-9164(00)88606-3
    [5] 林彦军, 李殿卿, 李峰, 等. 一种旋转液膜反应器及其在制备层状复合金属氢氧化物中的应用: CN201210105567. 6[P]. 2013-12-25.

    LIN Y J, LI D Q, LI F, et al. A rotating liquid membrane reactor and its application in the preparation of layered composite metal hydroxide: CN201210105567. 6[P]. 2013-12-25(in Chinese).
    [6] JIAO Q Z, YUN Z, HUI X, et al.Intercalation and selective IR adsorption of hydrotalcite[J].Chinese Journal of Applied Chemistry, 2002, 19(10):1011-1013. https://www.researchgate.net/publication/292411722_Intercalation_and_selective_IR_adsorption_of_hydrotalcite
    [7] 李雪. 旋转液膜反应器内流场的研究[D]. 北京: 北京化工大学, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2862467

    LI X. Flow field in rotating liquid membrane reactor[D]. Beijing: Beijing University of Chemical Technology, 2014(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2862467
    [8] TAYLOR G I.Stability of a viscous liquid contained between two rotating cylinders[J].Philosophical Transactions of the Royal Society of London, 1923, 223:289-343. doi: 10.1098/rsta.1923.0008
    [9] COLES D.Transition in circular Couette flows[J].Journal of Fluid Mechanics, 1965, 21:385-425. doi: 10.1017/S0022112065000241
    [10] ANDERECK C D, LIU S S, SWINNEY H L.Flow regimes in a circular Couette system with in-dependently rotating cylinders[J].Journal of Fluid Mechanics, 1986, 164:155-183. doi: 10.1017/S0022112086002513
    [11] WIMMER M.An experimental investigation of Taylor vortices flow between conical cylinders[J].Journal of Fluid Mechanics, 1995, 292:205-227. doi: 10.1017/S0022112095001492
    [12] NOUI-MEHIDI M N, OHMURA N.Mechanism of mode selection for Taylor vortices flow between co-axial conical rotating cylinders[J].Journal of Fluids and Structures, 2002, 16(2):247-262. doi: 10.1006/jfls.2001.0417
    [13] 文普. 同轴旋转圆台间流体流动的理论研究和数值模拟[D]. 北京: 北京化工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10010-2010169759.htm

    WEN P. The theoretical study and numerical simulation of fluid flow between coaxial rotary cylinder[D]. Beijing: Beijing University of Chemical Technology, 2010(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10010-2010169759.htm
    [14] 张艺晓. 同轴旋转圆台间流体流动的动力学研究[D]. 北京: 北京化工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10010-1012414250.htm

    ZHANG Y X. Study on dynamic flow of fluid flow between coaxial rotating cylinder[D]. Beijing: Beijing University of Chemical Technology, 2012(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10010-1012414250.htm
    [15] 李华鹏. 非平行环隙同轴旋转圆台间流体流动的数值模拟和理论分析[D]. 北京: 北京化工大学, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2628970

    LI H P. Numerical simulation and theoretical analysis of fluid flow between non-parallel annulus coaxial rotating circular table[D]. Beijing: Beijing University of Chemical Technology, 2014(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2628970
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  126
  • PDF下载量:  516
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-09
  • 录用日期:  2018-01-08
  • 网络出版日期:  2018-08-20

目录

    /

    返回文章
    返回
    常见问答