留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应非奇异快速终端滑模固定时间收敛制导律

赵国荣 李晓宝 刘帅 韩旭

赵国荣, 李晓宝, 刘帅, 等 . 自适应非奇异快速终端滑模固定时间收敛制导律[J]. 北京航空航天大学学报, 2019, 45(6): 1059-1070. doi: 10.13700/j.bh.1001-5965.2018.0621
引用本文: 赵国荣, 李晓宝, 刘帅, 等 . 自适应非奇异快速终端滑模固定时间收敛制导律[J]. 北京航空航天大学学报, 2019, 45(6): 1059-1070. doi: 10.13700/j.bh.1001-5965.2018.0621
ZHAO Guorong, LI Xiaobao, LIU Shuai, et al. Adaptive nonsingular fast terminal sliding mode guidance law with fixed-time convergence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1059-1070. doi: 10.13700/j.bh.1001-5965.2018.0621(in Chinese)
Citation: ZHAO Guorong, LI Xiaobao, LIU Shuai, et al. Adaptive nonsingular fast terminal sliding mode guidance law with fixed-time convergence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1059-1070. doi: 10.13700/j.bh.1001-5965.2018.0621(in Chinese)

自适应非奇异快速终端滑模固定时间收敛制导律

doi: 10.13700/j.bh.1001-5965.2018.0621
基金项目: 

国家自然科学基金 61473306

详细信息
    作者简介:

    赵国荣  博士, 教授。主要研究方向:飞行器控制与导航技术

    李晓宝  男, 博士研究生。主要研究方向:飞行器导航制导与控制

    通讯作者:

    赵国荣, E-mail: grzhao6881@163.com

  • 中图分类号: V448.133

Adaptive nonsingular fast terminal sliding mode guidance law with fixed-time convergence

Funds: 

National Natural Science Foundation of China 61473306

More Information
  • 摘要:

    针对机动目标的末制导拦截问题,设计了一种带攻击角度约束的非奇异快速终端滑模固定时间收敛制导律。与有限时间收敛终端滑模制导律相比,所提制导律能够确保弹目视线(LOS)角和弹目视线角速率在固定时间内是收敛的,并且收敛时间是独立于制导系统初始条件的,可以根据制导律参数预先给定。构造了一种新型的非奇异快速终端滑模面,有效解决了奇异性问题,同时通过合理地改变滑模面与弹目视线角跟踪误差的趋近律指数,使得制导系统比现有的固定时间收敛控制具有更快的收敛速率。此外,设计了一种自适应律,针对目标机动引起的未知扰动进行估计,使得制导律的设计无需预先知道任何关于目标机动的信息。通过仿真实验验证了所提制导律能够使导弹成功拦截机动目标,并且与现有制导律相比,具有更快的系统收敛速率、更高的拦截精度及更短的拦截时间。

     

  • 图 1  导弹和目标之间的运动关系

    Figure 1.  Missile and target engagement geometry

    图 2  制导系统变量的收敛过程

    Figure 2.  Convergence process of guidance system variable

    图 3  不同初始航迹角拦截目标的仿真结果

    Figure 3.  Simulation results of intercepting target under different initial flight path anges

    图 4  不同期望终端LOS角拦截目标的仿真结果

    Figure 4.  Simulation results of intercepting target under different desired terminal LOS angles

    图 5  测量噪声对制导性能的影响

    Figure 5.  Influence of measurement noise on guidance performance

    图 6  不同制导律仿真对比

    Figure 6.  Simulation comparison of different guidance laws

    表  1  蒙特卡罗仿真统计

    Table  1.   Simulation statistics of Monte Carlo

    qd/(°) 脱靶量/m LOS角跟踪误差/(°)
    均值 方差 均值 方差
    20 0.0221 3.4043×10-4 -1.0104×10-3 -1.2311×10-6
    30 0.0219 2.3528×10-4 9.4626×10-3 -8.9698×10-6
    40 0.0362 4.8014×10-4 0.0140 -2.0436×10-6
    下载: 导出CSV

    表  2  不同制导律下拦截目标时的仿真结果

    Table  2.   Simulation results of intercepting target under different guidance laws

    制导律 拦截时间/s 脱靶量/m LOS角跟踪误差/(°) aME/(m·s-2)
    NTSMG 20.6160 0.0233 -0.0042 218.3325
    AFTNFTSMG 17.1570 0.0184 0.0335 98.3661
    AFTNTSMG 17.4693 0.0232 0.0459 114.7284
    下载: 导出CSV
  • [1] 蔡洪, 胡正东, 曹渊.具有终端角度约束的导引律综述[J].宇航学报, 2010, 31(2):315-323. doi: 10.3873/j.issn.1000-1328.2010.02.003

    CAI H, HU Z D, CAO Y.A survey of guidance law with terminal impact constraints[J]. Journal of Astronautics, 2010, 31(2):315-323(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.02.003
    [2] PARK B G, KIM T H, TAHK M J.Biased PNG with terminal-angle constraint for intercepting nonmaneuvering targets under physical constraints[J]. IEEE Transactions on Aerospace and Electronic System, 2017, 55(3):1562-1572.
    [3] SHINAR J, SHIMA T, KEBKE A.On the validity of linearized analysis in the interception of reentry vehicles[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference.Reston: AIAA, 1998: 1050-1060.
    [4] 张友安, 黄诘, 孙阳平.带有落角约束的一般加权最优制导律[J].航空学报, 2014, 35(3):848-856. http://d.old.wanfangdata.com.cn/Periodical/hkxb201403026

    ZHANG Y A, HUANG J, SUN Y P.Generalized weighted optimal guidance law with impact angle constraints[J]. Acta Aeronautica et Astronautica Sincia, 2014, 35(3):848-856(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201403026
    [5] 刘延芳, 齐乃明, 夏齐, 等.基于非线性模型的大气层内拦截弹微分对策制导律[J].航空学报, 2011, 32(7):1171-1179. http://d.old.wanfangdata.com.cn/Periodical/hkxb201107001

    LIU Y F, QI N M, XIA Q, et al.Differential game guidance law for endoatmospheric interceptor missiles based on nonlinear model[J]. Acta Aeronautica et Astronautica Sincia, 2011, 32(7):1171-1179(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201107001
    [6] 周卫东, 陈沿逵, 熊少锋.带攻击角度约束的无抖振滑模制导律设计[J].北京航空航天大学学报, 2016, 42(2):669-676. http://bhxb.buaa.edu.cn/CN/abstract/abstract13860.shtml

    ZHOU W D, CHEN Y K, XIONG S F.Chattering-free sliding mode guidance law with impact angle constraint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):669-676(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13860.shtml
    [7] ATES U A.Lyapunov based nonlinear impact angle guidance law for stationary targets[C]//Proceeding of the AIAA Guidance, Navigation, and Control Conference.Reston: AIAA, 2015: 1-14.
    [8] ZHANG Y X, SUN M W, CHEN Z Q.Finite time convergent guidance law with impact angle constraint based on sliding control[J]. Nonlinear Dynamics, 2012, 7(3):619-625.
    [9] HE S M, LIN D.Adaptive nonsingular sliding mode based guidance law with terminal angular constraint[J]. International Journal of Aeronautical and Space Sciences, 2014, 15(2):146-152. doi: 10.5139/IJASS.2014.15.2.146
    [10] 杨锁昌, 张宽桥, 陈鹏.带攻击角度约束的自适应终端滑模制导律[J].北京航空航天大学学报, 2016, 42(8):1566-1574. http://bhxb.buaa.edu.cn/CN/abstract/abstract13611.shtml

    YANG S C, ZHANG K Q, CHEN P.Adaptive terminal sliding mode guidance with impact angle constraint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8):1566-1574(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13611.shtml
    [11] SONG J H, SONG S M, ZHOU H B.Adaptive nonsingular fast terminal sliding mode guidance law with impact angle constraints[J]. International Journal of Control, Automation and Systems, 2016, 14(1):99-114. http://d.old.wanfangdata.com.cn/Periodical/hkxb-e201806015
    [12] POLYAKOV A.Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8):2106-2110. doi: 10.1109/TAC.2011.2179869
    [13] ZUO Z Y.Nonlinear fixed-time consensus tracking for second-order multi-agent networks[J]. Automatica, 2015, 54:305-309. doi: 10.1016/j.automatica.2015.01.021
    [14] LI H J, CAI Y L.On SFTSM control with fixed-time convergence[J]. IET Control Theory and Applications, 2017, 11(6):766-773. doi: 10.1049/iet-cta.2016.1457
    [15] ZHANG Y, TANG S J, GUO J.Adaptive terminal angle constraint interception against maneuvering targets with fast fixed-time convergence[J]. International Journal of Robust and Nonlinear Control, 2018, 28(8):2996-3014. doi: 10.1002/rnc.v28.8
    [16] SUN S, ZHOU D, HOU W T.A guidance law with finite time convergence accounting for autopilot lag[J]. Aerospace Science and Technology, 2013, 25(1):132-137. doi: 10.1016/j.ast.2011.12.016
    [17] ZHAO B, ZHOU J.Smooth adaptive finite time guidance law with impact angle constraints[J]. International Journal of Aerospace Engineering, 2016, 2016:5730168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004671275
    [18] YANG L, YANG J Y.Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust Nonlinear Control, 2011, 21(16):1865-1879. doi: 10.1002/rnc.v21.16
    [19] KUMAR S R, RAO S, GHOSE D.Nonsingular terminal sliding mode guidance with impact angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):1114-1130. doi: 10.2514/1.62737
    [20] XIONG S F, WANG W H, SONG S, et al.Extended state observer based impact angle constrained guidance law for maneuvering target interception[J]. Journal of Aerospace Engineering, 2015, 29(14):2589-2607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2729f9de583ed8ec2864c4b5e188356
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1037
  • HTML全文浏览量:  157
  • PDF下载量:  614
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 录用日期:  2018-12-07
  • 网络出版日期:  2019-06-20

目录

    /

    返回文章
    返回
    常见问答