留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机翼前缘积冰对大飞机操稳特性的影响

魏扬 徐浩军 薛源 李哲 张久星

魏扬, 徐浩军, 薛源, 等 . 机翼前缘积冰对大飞机操稳特性的影响[J]. 北京航空航天大学学报, 2019, 45(6): 1088-1095. doi: 10.13700/j.bh.1001-5965.2018.0589
引用本文: 魏扬, 徐浩军, 薛源, 等 . 机翼前缘积冰对大飞机操稳特性的影响[J]. 北京航空航天大学学报, 2019, 45(6): 1088-1095. doi: 10.13700/j.bh.1001-5965.2018.0589
WEI Yang, XU Haojun, XUE Yuan, et al. Influence of ice accretion on leading edge of wings on stability and controllability of large aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1088-1095. doi: 10.13700/j.bh.1001-5965.2018.0589(in Chinese)
Citation: WEI Yang, XU Haojun, XUE Yuan, et al. Influence of ice accretion on leading edge of wings on stability and controllability of large aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1088-1095. doi: 10.13700/j.bh.1001-5965.2018.0589(in Chinese)

机翼前缘积冰对大飞机操稳特性的影响

doi: 10.13700/j.bh.1001-5965.2018.0589
基金项目: 

国家“973”计划 2015CB755800

国家自然科学基金 61503406

民用飞机专项科研 MJ-2015-F-019

详细信息
    作者简介:

    魏扬  男, 博士研究生。主要研究方向:飞行仿真与飞行安全

    徐浩军  男, 硕士, 教授, 博士生导师。主要研究方向:飞行品质、飞行安全与等离子体隐身

    薛源  男, 博士, 讲师, 硕士生导师。主要研究方向:飞行风险评估

    通讯作者:

    薛源, E-mail: szxy1986@163.com

  • 中图分类号: V212.1

Influence of ice accretion on leading edge of wings on stability and controllability of large aircraft

Funds: 

National Basic Research Program of China 2015CB755800

National Natural Science Foundation of China 61503406

Civil Aircraft Special Research MJ-2015-F-019

More Information
  • 摘要:

    机翼结冰影响飞机的操稳特性和飞行性能,对飞行安全造成危害。基于实验数据构建了典型的不同结冰严重程度的机翼前缘积冰冰形,采用高精度数值模拟方法得到背景飞机机翼前缘积冰的气动数据,建立了飞机六自由度非线性动力学模型,在此基础上设计了俯仰角保持、滚转角保持及高度保持模式的自动驾驶仪闭环仿真系统。通过开环仿真,分析了不同程度积冰对飞机配平特性、纵向长短周期模态及横航向模态的影响,比较了不同程度积冰情形下飞机动态响应的差异。通过闭环仿真,研究了积冰对3种模式下自动驾驶性能的影响。仿真结果表明:积冰对飞机配平特性、模态特性及开环动态响应特性均会造成一定的不良影响,威胁飞行安全。

     

  • 图 1  背景飞机三维模型

    Figure 1.  3D model of background aircraft

    图 2  重度结冰和中度结冰几何模型对比

    Figure 2.  Comparison of heavy and moderate icing geometric models

    图 3  机翼前缘重度结冰的冰形剖面

    Figure 3.  Ice shape profile of heavy icing on leading edge of wing

    图 4  升力系数变化曲线

    Figure 4.  Variation curves of lift coefficient

    图 5  阻力系数变化曲线

    Figure 5.  Variation curves of drag coefficient

    图 6  俯仰力矩系数变化曲线

    Figure 6.  Variation curves of pitching moment coefficient

    图 7  俯仰角保持模式结构框图

    Figure 7.  Structure diagram of pitch attitude hold mode

    图 8  无侧滑滚转角保持模式结构框图

    Figure 8.  Structure diagram of roll attitude hold mode without sideslip

    图 9  高度保持模式结构框图

    Figure 9.  Structure diagram of altitude hold mode

    图 10  主要飞行参数响应曲线

    Figure 10.  Response curves of main flight parameters

    图 11  俯仰角保持模式仿真结果

    Figure 11.  Simulation results in pitch attitude hold mode

    图 12  滚转角保持模式仿真结果

    Figure 12.  Simulation results in roll attitude hold mode

    图 13  高度保持模式仿真结果

    Figure 13.  Simulation results in attitude hold mode

    表  1  不同积冰情形下的飞机配平参数

    Table  1.   Aircraft trim parameters under different ice accretion conditions

    积冰情形 配平迎角/(°) 升降舵偏角/(°) 油门偏度/%
    干净外形 6.83 -4.37 29.36
    中度结冰 8.03 -2.17 36.90
    重度结冰 8.67 -1.84 45.73
    下载: 导出CSV

    表  2  不同积冰情形下的飞机本体纵向长短周期模态特征参数

    Table  2.   Longitudinal long- and short-period modal characteristic parameters of aircraft body under different ice accretion conditions

    积冰情形 ωnsp/(rad·s-1) ζsp ωnp/(rad·s-1) ζp CAP/(rad·s-2·g-1)
    干净外形 1.7775 0.4566 0.0822 0.0282 7.3921 0.4274
    中度结冰 1.4944 0.4962 0.1031 0.0381 6.0303 0.3703
    重度结冰 1.5219 0.4907 0.0957 0.0557 6.4009 0.3618
    下载: 导出CSV

    表  3  不同积冰情形下的飞机本体横航向模态特征参数

    Table  3.   Lateral modal characteristic parameters of aircraft body under different ice accretion conditions

    积冰情形 τR/s λS τS/s ωnDR/(rad·s-1) ζDR τDR/s
    干净外形 0.1551 -0.0018 553.7114 1.2671 0.1965 4.0157
    中度结冰 0.1636 0.0066 150.8256 1.3061 0.2137 3.5833
    重度结冰 0.1676 0.0019 540.3449 1.2665 0.2123 3.7196
    下载: 导出CSV
  • [1] REEHORST A L, JR ADDY H E, COLANTONIO R O.Examination of icing induced loss of control and its mitigations: AIAA-2010-8140[R]. Reston: AIAA, 2010.
    [2] CEBECI T.Effects of environmentally imposed roughness on airfoil performance: NASA CR 179639[R]. Washington, D.C.: NASA, 1981.
    [3] BRAGG M B, GREGOREK G M.Wind tunnel investigation of airfoil performance degradation due to icing: AIAA-82-0582[R]. Reston: AIAA, 1982.
    [4] BRAGG M B, ZAGULI R J, GREGOREK G M.Wind tunnel evaluation of airfoil performance using simulated ice shapes: NASA CR 167960[R]. Washington, D.C.: NASA, 1982.
    [5] BRAGG M B, COIRIER W J.Detailed measurements of the flowfield in the vicinity of an airfoil with glaze ice: AIAA-85-0409[R]. Reston: AIAA, 1985.
    [6] BRAGG M B, COIRIER W J.Aerodynamic measurements of an airfoil with simulated glaze ice: AIAA-86-0484[R]. Reston: AIAA, 1986.
    [7] BRAGG M B, SPRING S A.An experimental study of the flowfield about an airfoil with glaze ice: AIAA-87-0100[R]. Reston: AIAA, 1987.
    [8] BRAGG M B, KHODADOUST A.Experimental measurements in a large separation bubble due to a simulated glaze ice accretion: AIAA-88-0116[R]. Reston: AIAA, 1988.
    [9] BRAG M B, KHODADOUST A.Effect of simulated glaze ice on a rectangular wing: AIAA-89-0750[R]. Reston: AIAA, 1989.
    [10] KHODADOUST A.A flow visualization study of the leading edge separation bubble on a NACA 0012 airfoil with simulated glaze ice[D]. Columbus: Ohio State University, 1987.
    [11] RANAUDO R J.Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions: AIAA-84-0179[R]. Reston: AIAA, 1984.
    [12] RANAUDO R J, MIKKELSEN K L, MCKNIGHT R C, et al.The measurement of aircraft performance and stability and control after flight through natural icing conditions: AIAA-86-9758[R]. Reston: AIAA, 1986.
    [13] POTAPCZUK M G, GERHART P M.Progress in the development of a Navier-Stokes solver for evaluation of iced airfoil performance: AIAA-85-0410[R]. Reston: AIAA, 1985.
    [14] POTAPCZUK M G.Navier-Stokes computations for a NACA 0012 airfoil with leading edge ice: AIAA-87-0101[R]. Reston: AIAA, 1987.
    [15] POTAPCZUK M G.Navier-Stokes analysis of airfoils with leading-edge ice accretions[D]. Akron: The University of Akron, 1989.
    [16] ZAMAN K B, POTAPCZUK M G.The low frequency oscillation in the flow over a NACA 0012 airfoil with an iced leading edge[M]//MUELLER T J.Low Reynolds number aerodynamics.Berlin: Springer-Verlag, 1989: 271-282.
    [17] HILTNER D W.A nonlinear aircraft simulation of ice contaminated tailplane stall[D]. Columbus: Ohio State University, 1998.
    [18] SIBILSKI K, LASEK M, LADYZYNSKA-KOZDRAS E, et al.Aircraft climbing flight dynamics with simulated ice accretion: AIAA-2004-4948[R]. Reston: AIAA, 2004.
    [19] CUNNINGHAM M A.A simplified icing model for simulation and analysis of dynamic effects[D]. Morgantown: West Virginia University, 2012.
    [20] 王明丰, 王立新, 黄成涛.积冰对飞机纵向操稳特性的量化影响[J].北京航空航天大学学报, 2008, 34(5):592-595. http://bhxb.buaa.edu.cn/CN/abstract/abstract9149.shtml

    WANG M F, WANG L X, HUANG C T.Computational effects of ice accretion on aircraft longitudinal stability and control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5):592-595(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9149.shtml
    [21] 袁坤刚, 曹义华.结冰对飞机飞行动力学特性影响的仿真研究[J].系统仿真学报, 2007, 19(9):1929-1932. doi: 10.3969/j.issn.1004-731X.2007.09.009

    YUAN K G, CAO Y H.Simulation of ice effect on aircraft flight dynamics[J]. Journal of System Simulation, 2007, 19(9):1929-1932(in Chinese). doi: 10.3969/j.issn.1004-731X.2007.09.009
    [22] 蒋天俊.结冰对飞机飞行性能影响的研究[D].南京: 南京航空航天大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10287-2009054739.htm

    JIANG T J.Study on the effect of icing on aircraft flight performance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-2009054739.htm
    [23] 王起达.结冰后飞机的纵向稳定性和操纵性研究[D].南京: 南京航空航天大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10287-2010081957.htm

    WANG Q D.Study on longitudinal stability and maneuverability of aircraft after icing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-2010081957.htm
    [24] 张智勇.结冰飞行动力学特性与包线保护控制律研究[D].南京: 南京航空航天大学, 2006. http://cdmd.cnki.com.cn/article/cdmd-10287-2006118911.htm

    ZHANG Z Y.Research on iced aircraft flight dynamics characteristics and envelope protection control law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006(in Chinese). http://cdmd.cnki.com.cn/article/cdmd-10287-2006118911.htm
    [25] 邵元培, 车竞, 丁娣.大飞机机翼结冰对飞行动力学特性影响研究[J].飞行力学, 2018, 36(1):12-15. http://d.old.wanfangdata.com.cn/Periodical/fxlx201801003

    SHAO Y P, CHE J, DING D.Study on the influence of wing icing on flight dynamics characteristics of large aircraft[J]. Flight Dynamics, 2018, 36(1):12-15(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fxlx201801003
    [26] BRAGG M B, HUTCHISON T, MERRET J.Effect of ice accretion on aircraft flight dynamics: AIAA-2000-0360[R]. Reston: AIAA, 2000.
    [27] SONNEVELDT L.Nonlinear F-16 model description[R]. Delft: Delft University of Technology, 2010.
    [28] 刘世前.现代飞机飞行动力学与控制[M].上海:上海交通大学出版社, 2014:145-150.

    LIU S Q.Flight dynamics and control of modern air-crafts[M]. Shanghai:Shanghai Jiao Tong University Press, 2014:145-150(in Chinese).
    [29] US Air Force.US military specification: Flying qualities of piloted airplanes: MIL-F-8785C[S]. Philadelphia: Naval Publications and Form Center, 1982.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  696
  • HTML全文浏览量:  140
  • PDF下载量:  733
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 录用日期:  2018-11-16
  • 网络出版日期:  2019-06-20

目录

    /

    返回文章
    返回
    常见问答