留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双剪连接件及双耳连接耳片疲劳寿命估算的逐次累计求和算法

陈迪 李钰 张亦波 宋颖刚 熊峻江

陈迪, 李钰, 张亦波, 等 . 双剪连接件及双耳连接耳片疲劳寿命估算的逐次累计求和算法[J]. 北京航空航天大学学报, 2019, 45(6): 1175-1184. doi: 10.13700/j.bh.1001-5965.2018.0603
引用本文: 陈迪, 李钰, 张亦波, 等 . 双剪连接件及双耳连接耳片疲劳寿命估算的逐次累计求和算法[J]. 北京航空航天大学学报, 2019, 45(6): 1175-1184. doi: 10.13700/j.bh.1001-5965.2018.0603
CHEN Di, LI Yu, ZHANG Yibo, et al. Cycle-by-cycle accumulation algorithm for predicting fatigue lives of double-lap and double-lug joints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1175-1184. doi: 10.13700/j.bh.1001-5965.2018.0603(in Chinese)
Citation: CHEN Di, LI Yu, ZHANG Yibo, et al. Cycle-by-cycle accumulation algorithm for predicting fatigue lives of double-lap and double-lug joints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1175-1184. doi: 10.13700/j.bh.1001-5965.2018.0603(in Chinese)

双剪连接件及双耳连接耳片疲劳寿命估算的逐次累计求和算法

doi: 10.13700/j.bh.1001-5965.2018.0603
详细信息
    作者简介:

    陈迪  女, 博士研究生。主要研究方向:飞机结构疲劳

    熊峻江  男, 博士, 教授, 博士生导师。主要研究方向:飞机结构疲劳

    通讯作者:

    熊峻江, E-mail: jjxiong@buaa.edu.cn

  • 中图分类号: V222

Cycle-by-cycle accumulation algorithm for predicting fatigue lives of double-lap and double-lug joints

More Information
  • 摘要:

    为了研究复杂连接件疲劳失效机理和估算其裂纹形成和扩展寿命,在双剪连接件和双耳连接耳片疲劳试验的基础上,首先,通过扫描电子显微镜(SEM)分析,研究了其破坏模式和机理,并利用断口定量反推技术判读了疲劳裂纹形成与扩展寿命。然后,根据应力严重系数法,建立了复杂连接件疲劳性能S-N-L(疲劳应力-寿命-应力严重系数)曲面;利用该曲面,发展了复杂连接件疲劳裂纹形成寿命估算算法;基于断裂力学理论,推导出裂纹扩展长度与扩展角度公式,建立了疲劳裂纹扩展寿命估算的累计求和算法。最后,运用寿命估算方法,估算了双剪连接件的疲劳裂纹形成寿命、双剪连接件和双耳连接耳片的裂纹扩展寿命,预测结果与断口判读结果吻合良好。本文寿命估算方法为复杂连接件疲劳定寿提供了理论依据。

     

  • 图 1  三维裂纹扩展角度与长度示意图

    Figure 1.  Schematic of angle and length for 3D crack growth

    图 2  双剪连接件和双耳连接耳片形状和尺寸

    Figure 2.  Geometry and dimensions of double-lap joints and double-lug joints

    图 3  双剪连接件的疲劳失效

    Figure 3.  Fatigue failure of double-lap joint

    图 4  双耳连接耳片的疲劳失效

    Figure 4.  Fatigue failure of double-lug joint

    图 5  断口SEM照片

    Figure 5.  SEM photographs of fracture

    图 6  断口判读方法

    Figure 6.  Fracture interpretation method

    图 7  裂纹长度与裂纹扩展寿命

    Figure 7.  Crack length versus crack growth life

    图 8  双剪连接件有限元模型

    Figure 8.  Finite element model for double-lap joints

    图 9  双剪连接件裂纹扩展模拟

    Figure 9.  Crack growth simulation of double-lap joints

    图 10  双耳连接耳片裂纹扩展模拟

    Figure 10.  Crack growth simulation of double-lug joints

    表  1  材料力学性能[35]

    Table  1.   Mechanical properties of materials [35]

    部件 材料 E/GPa μ σs/MPa σb/MPa
    盖板、芯板 2324-T39铝合金 72.4 0.33 417 532
    耳片 2024-T351铝合金 73.1 0.33 324 442
    螺栓、销棒 45号钢 200 0.30 375 680
    下载: 导出CSV

    表  2  疲劳试验结果

    Table  2.   Results of fatigue tests

    连接件 疲劳载荷 疲劳寿命/
    cycle
    应力比 载荷峰值
    双剪连接件 0.06 190 MPa 429 550
    双耳连接耳片 0.1 60 973 N 45 000
    下载: 导出CSV

    表  3  双剪连接件的裂纹扩展寿命

    Table  3.   Crack growth life of double-lap joints

    序号k 裂纹长度判读值ak/mm 疲劳条带间距判读值Sk/μm 扩展寿命判读值Nk/
    cycle
    扩展寿命预测值/
    cycle
    相对偏差/
    %
    1 0.05 0.15 0 0 0
    2 0.53 0.17 3 000 4 382 46.1
    3 1 0.26 5 186 6 683 28.9
    4 1.02 0.24 5 266 6 767 28.5
    5 1.43 0.35 6 656 7 937 19.2
    6 1.98 0.3 8 348 8 987 7.6
    7 2.61 0.36 10 257 9 671 5.7
    8 3 0.35 11 356 10 077 11.3
    9 3.83 0.42 13 512 10 600 21.5
    10 4.01 1.03 13 760 10 641 22.7
    下载: 导出CSV

    表  4  双耳连接耳片的裂纹扩展寿命

    Table  4.   Crack growth life of double-lug joints

    序号k 裂纹长度判读值ak/mm 疲劳条带间距判读值Sk/μm 扩展寿命判读值Nk/
    cycle
    扩展寿命预测值/
    cycle
    相对偏差/
    %
    1 0.01 0.36 0 0 0
    2 0.37 0.4 948 950 0.21
    3 2.44 0.3 6 826 7 451 9.2
    4 3.98 0.45 10 936 10 802 1.2
    5 5.5 0.44 14 381 13 951 3.0
    6 6.98 0.32 18 250 17 148 6.0
    7 8.62 0.34 23 220 20 748 10.6
    8 11.2 0.75 27 966 24 695 11.7
    9 13.39 1.4 30 002 26 045 13.2
    10 15.41 1.15 31 589 26 195 17.1
    11 17.85 1.74 33 283 26 242 21.2
    下载: 导出CSV
  • [1] ESMAEILI F, CHAKHERLOU T N, ZEHSAZ M.Investigation of bolt clamping force on the fatigue life of double lap simple bolted and hybrid (bolted/bonded) joints via experimental and numerical analysis[J].Engineering Failure Analysis, 2014, 45(8):406-420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=079eeb92922c4440104e72ab705930d7
    [2] ESMAEILI F, CHAKHERLOU T N.Investigation on the effect of tigthening torque on the stress distribution in double lap simple bolted and hybrid (bolted-bonded) joints[J].Journal of Solid Mechanics, 2015, 7(3):268-280.
    [3] JIMÉNEZ-PEÑA C, TALEMI R H, ROSSI B, et al.Investigations on the fretting fatigue failure mechanism of bolted joints in high strength steel subjected to different levels of pre-tension[J].Tribology International, 2016, 108(4):128-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54b59d0f11731d596fe587a3487326ef
    [4] ABAZADEH B, CHAKHERLOU T N, ALDERLIESTEN R C.Effect of interference fitting and/or bolt clamping on the fatigue behavior of Al alloy 2024-T3 double shear lap joints in different cyclic load ranges[J].International Journal of Mechanical Sciences, 2013, 72(7):2-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b4d12a350c6b0881f92ff6f48ef9f52c
    [5] CHAKHERLOU T N, MIRZAJANZADEH M, ABAZADEH B, et al.An investigation about interference fit effect on improving fatigue life of a holed single plate in joints[J].European Journal of Mechanics A/Solids, 2010, 29(4):675-682. doi: 10.1016/j.euromechsol.2009.12.009
    [6] CHAKHERLOU T N, MIRZAJANZADEH M, VOGWELL J.Experimental and numerical investigations into the effect of an interference fit on fatigue life of double shear lap joints[J].Engineering Failure Analysis, 2009, 16(7):2066-2080. doi: 10.1016/j.engfailanal.2009.01.009
    [7] CHAKHERLOU T N, TAGHIZADEH H, AGHDAM A B.Experimental and numerical comparison of cold expansion and interference fit methods in improving fatigue life of holed plate in double shear lap joints[J].Aerospace Science and Technology, 2013, 29(1):351-362. doi: 10.1016/j.ast.2013.04.006
    [8] GOPALAKRISHNA H D, MURTHY H N N, KRISHNA M, et al.Cold expansion of holes and resulting fatigue life enhancement and residual stresses in Al 2024 T3 alloy-An experimental study[J].Engineering Failure Analysis, 2010, 17(2):361-368. doi: 10.1016/j.engfailanal.2009.08.002
    [9] CHAKHERLOU T N, VOGWELL J.The effect of cold expansion on improving the fatigue life of fastener holes[J].Engineering Failure Analysis, 2003, 10(1):13-24. doi: 10.1016/S1350-6307(02)00028-6
    [10] RALPH W C, JOHNSON W S, MAKEEV A, et al.Fatigue performance of production-quality aircraft fastener holes[J].International Journal of Fatigue, 2007, 29(7):1319-1327. doi: 10.1016/j.ijfatigue.2006.10.016
    [11] MUCHA J, WITKOWSKI W.The experimental analysis of the double joint type change effect on the joint destruction process in uniaxial shearing test[J].Thin-Walled Structures, 2013, 66(5):39-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c838331ff1e113cbca3abe28877551f9
    [12] SKORUPA M, MACHNIEWICZ T, SKORUPA A, et al.Fatigue life predictions for riveted lap joints[J].International Journal of Fatigue, 2017, 94(1):41-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6036f5b560aaa90c10a906dc08f35ad6
    [13] LIU J H, ZHANG R L, WEI Y B, et al.A new method for estimating fatigue life of notched specimen[J].Theoretical and Applied Fracture Mechanics, 2018, 93(1):137-143. https://www.sciencedirect.com/science/article/pii/S0167844217301155
    [14] 田本鉴, 熊峻江.非对称疲劳载荷作用铆钉连接件疲劳寿命估算[J].北京航空航天大学学报, 2013, 39(12):1649-1653. http://bhxb.buaa.edu.cn/CN/abstract/abstract12806.shtml

    TIAN B J, XIONG J J.Fatigue life estimation of riveted joints subjected to asymmetrical loading[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12):1649-1653(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12806.shtml
    [15] 张天宇, 何宇廷, 陈涛, 等.一种多钉铆接连接件的疲劳寿命分析方法[J].北京航空航天大学学报, 2018, 44(9):1933-1940. http://bhxb.buaa.edu.cn/CN/abstract/abstract14590.shtml

    ZHANG T Y, HE Y T, CHEN T, et al.A fatigue life analysis method for multiple riveted joint[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9):1933-1940(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14590.shtml
    [16] HUANG W, WANG T J, GARBATOV Y, et al.DFR based fatigue reliability assessment of riveted lap joint accounting for correlations[J].International Journal of Fatigue, 2013, 47(2):106-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=636554b3c9834951c9441068f8443e2b
    [17] TIAN B J, XIONG J J, LIU J Z.A new approach for evaluating fatigue lives of multi-fastener mechanical joints based on a nominal stress concept and minimal datasets[J].International Journal of Fatigue, 2015, 80(11):257-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0827e1f3d1da9fa10c12834d72b0db4d
    [18] DE JESUS A M P, DA SILVA A L L, CORREIA J A F O.Fatigue of riveted and bolted joints made of puddle iron-A numerical approach[J].Journal of Constructional Steel Research, 2014, 102(1):164-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ef7b4f762249493f176430d1dd757cf
    [19] SANCHES R F, DE JESUS A M P, CORREIA J A F O, et al.A probabilistic fatigue approach for riveted joints using Monte Carlo simulation[J].Journal of Constructional Steel Research, 2015, 110(7):149-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa57fbfa6fe1d9dd21ba0710585c4849
    [20] MIKKOLA E, MURAKAMI Y, MARQUIS G.Equivalent crack approach for fatigue life assessment of welded joints[J].Engineering Fracture Mechanics, 2015, 149:144-155. doi: 10.1016/j.engfracmech.2015.10.022
    [21] CORREIA J A F O, BLASÓN S, DE JESUS A M P, et al.Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model[J].Engineering Failure Analysis, 2016, 69(11):15-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d25668300cbb189ed7704c77517c230
    [22] MIKKOLA E, MURAKAMI Y, MARQUIS G.Fatigue life assessment of welded joints by the equivalent crack length method[J].Procedia Materials Science, 2014, 3:1822-1827. doi: 10.1016/j.mspro.2014.06.294
    [23] WU Y Z, XU Y W, GUO X, et al.Fatigue life prediction based on equivalent initial flaw size for Al-Li 2297 under spectrum loading[J].International Journal of Fatigue, 2017, 103(14):39-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=862693c62498cbd172801c0977ed80aa
    [24] 张丽娜, 吴学仁, 刘建中.疲劳裂纹扩展中单峰过载引起的残余应力强度因子计算[J].机械强度, 2011, 33(3):432-437. http://d.old.wanfangdata.com.cn/Periodical/jxqd201103022

    ZHANG L N, WU X R, LIU J Z.Computation of residual stress intensity factors induced by single overload during fatigue crack growth[J].Journal of Mechanical Strength, 2011, 33(3):432-437(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxqd201103022
    [25] 王延忠, 田志敏, 侯良威, 等.航空重载面齿轮三维裂纹分析与疲劳裂纹扩展寿命预测[J].北京航空航天大学学报, 2014, 40(2):148-153. http://bhxb.buaa.edu.cn/CN/abstract/abstract12839.shtml

    WANG Y Z, TIAN Z M, HOU L W, et al.Three-dimensional crack analysis and fatigue life prediction of aero heavy-load face gear[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2):148-153(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12839.shtml
    [26] KUMAR S A, BHATTACHARYA A, BABU N C M.Fatigue crack growth life prediction around cold expanded hole using finite element method[J].Procedia Materials Science, 2014, 5:316-325. doi: 10.1016/j.mspro.2014.07.273
    [27] BERGARA A, DORADO J I, MEIZOSO A M, et al.Fatigue crack propagation in complex stress fields:Experimental and numerical simulations using the extended finite element method (XFEM)[J].International Journal of Fatigue, 2017, 103(14):112-121. https://www.sciencedirect.com/science/article/pii/S0142112317302396
    [28] NASRI K, ZENASNI M.Fatigue crack growth simulation in coated materials using X-FEM[J].Comptes Rendus Mecanique, 2017, 345(4):271-280. doi: 10.1016/j.crme.2017.02.005
    [29] 熊峻江.飞行器结构疲劳与寿命设计[M].北京:北京航空航天大学出版社, 2004.

    XIONG J J.Fatigue life design for aircraft structure[M].Beijing:Beihang University Press, 2004.
    [30] 赵少汴.抗疲劳设计手册[M].北京:机械工业出版社, 2015.

    ZHAO S B.Fatigue design manual[M].Beijing:China Machine Press, 2015.
    [31] FU Y, XIONG J J, SHENOI R A.Practical models for characterizing corrosion fatigue behaviours of metallic materials and for evaluating calendar lives of aircraft structural components[J].Proceedings of Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2017, 231:207-222. doi: 10.1177/0954406216637633
    [32] HERTZBERG R W.Deformation and fracture mechanics of engineering materials[M].Hoboken:Wiley Jones and Sons, 1996.
    [33] CHANG J, XU J Q, MUTOH Y.A general mixed-mode brittle fracture criterion for cracked materials[J].Engineering Fracture Mechanics, 2006, 73(9):1249-1263. doi: 10.1016/j.engfracmech.2005.12.011
    [34] AYGVL M, AL-EMRANI M, BARSOUM Z, et al.An investigation of distortion-induced fatigue cracking under variable amplitude loading using 3D crack propagation analysis[J].Engineering Failure Analysis, 2014, 45(10):151-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e15305d471171c34b8c6e07b1523e0ac
    [35] Federal Aviation Administration.Metallic materials properties development and standardization[M].Columbia:U.S.Department of Transportation, 2006:3-94.
    [36] ASTM.Standard practice for: Presentation of constant amplitude fatigue test results for metallic materials: ASTM E468-90[S].West Conshohocken: ASTM International, 2004: 1-6.
    [37] 刘新灵, 张铮, 陶春虎.疲劳断口定量分析[M].北京: 国防工业出版社, 2010.

    LIU X L, ZHANG Z, TAO C H.Fatigue fractography quantitative analysis[J].Beijing: National Defense Industry Press, 2010(in Chinese).
    [38] 郑晓玲, 刘文珽, 李令芳, 等.民机结构耐久性与损伤容限设计手册[M].北京:航空工业出版社, 2003.

    ZHENG X L, LIU W T, LI L F, et al.Design manual for durability and damage tolerance of civil aircraft structures[M].Beijing:Aviation Industry Press, 2003(in Chinese).
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  770
  • HTML全文浏览量:  144
  • PDF下载量:  369
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 录用日期:  2018-11-23
  • 网络出版日期:  2019-06-20

目录

    /

    返回文章
    返回
    常见问答