留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于凯恩方程的无人机伞降回收动力学建模与仿真

吴翰 王正平 周洲 王睿

吴翰, 王正平, 周洲, 等 . 基于凯恩方程的无人机伞降回收动力学建模与仿真[J]. 北京航空航天大学学报, 2019, 45(6): 1256-1265. doi: 10.13700/j.bh.1001-5965.2018.0602
引用本文: 吴翰, 王正平, 周洲, 等 . 基于凯恩方程的无人机伞降回收动力学建模与仿真[J]. 北京航空航天大学学报, 2019, 45(6): 1256-1265. doi: 10.13700/j.bh.1001-5965.2018.0602
WU Han, WANG Zhengping, ZHOU Zhou, et al. Dynamics modeling and simulation of UAV parachute recovery based on Kane equation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1256-1265. doi: 10.13700/j.bh.1001-5965.2018.0602(in Chinese)
Citation: WU Han, WANG Zhengping, ZHOU Zhou, et al. Dynamics modeling and simulation of UAV parachute recovery based on Kane equation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1256-1265. doi: 10.13700/j.bh.1001-5965.2018.0602(in Chinese)

基于凯恩方程的无人机伞降回收动力学建模与仿真

doi: 10.13700/j.bh.1001-5965.2018.0602
基金项目: 

航空科学基金 2016ZA53002

陕西省重点研发计划 2018ZDCXL-GY-03-04

详细信息
    作者简介:

    吴翰  男, 硕士研究生。主要研究方向:飞行器总体设计与无人机多体动力学建模

    王正平  男,教授,硕士生导师。主要研究方向:飞行器总体设计与结构设计

    周洲  女, 教授, 博士生导师。主要研究方向:飞行器总体设计与气动布局设计

    王睿  男, 副教授。主要研究方向:飞行器动力学建模与控制

    通讯作者:

    王正平, E-mail: ad502@nwpu.edu.cn

  • 中图分类号: V249

Dynamics modeling and simulation of UAV parachute recovery based on Kane equation

Funds: 

Aeronautical Science Foundation of China 2016ZA53002

Key R & D Program of Shaanxi Province, China 2018ZDCXL-GY-03-04

More Information
  • 摘要:

    在无人机的伞降回收过程中,无人机与降落伞一直都处于实时的动平衡状态,两者在伞降回收过程中的耦合关系及其复杂,因此很难建立精准的无人机伞降回收动力学模型。针对该问题,将伞降回收系统划分为降落伞和无人机分别进行处理。针对时变对象降落伞,通过阻力面积随充气时间的变化关系建立其动力学模型。针对无人机,首先,基于多体动力学思路,将其划分为左右机翼和机身的多体系统,通过平板绕流系数优化其伞降过程中的大迎角动力学模型;然后,通过偏速度矩阵将各体的动力学模型引入伞降回收系统质心;最终,基于凯恩方程推导并建立了伞降回收系统六自由度模型,并引入海拔高度和风力对无人机伞降回收的影响。通过数值仿真与实验数据的对比,可以发现两者具有较好的一致性,该动力学模型能够为无人机的伞降回收提供指导。

     

  • 图 1  伞降回收坐标系示意图

    Figure 1.  Schematic diagram of parachute recovery coordinate systems

    图 2  降落伞充气过程容积变化示意图

    Figure 2.  Schematic diagram of parachute volume variation during inflation process

    图 3  无人机伞降回收示意图

    Figure 3.  Schematic diagram of UAV parachute recovery

    图 4  无人机俯仰角、前飞速度、下降速度和飞行高度仿真结果与实验结果对比

    Figure 4.  Comparison of UAV angle of pitch, forward velocity, descent velocity and flight height between simulation and experimental results

    图 5  无人机稳定下降速度随海拔高度的变化

    Figure 5.  Variation of UAV steady descent velocity with altitude

    图 6  受1 m/s顺风、逆风、正侧风和逆侧风时,无人机前飞速度、侧向速度、下降速度和俯仰角的变化

    Figure 6.  Variation of UAV forward velocity, side velocity, descent velocity and angle of pitch under 1 m/s down wind, against wind, positive side wind and reverse side wind

    表  1  受1 m/s顺风、逆风、正侧风和逆侧风时,无人机伞降回收相关结果

    Table  1.   Related results of UAV parachute recovery under 1 m/s down wind, against wind, positive side wind and reverse side wind

    风力状况 无人机稳定下降速度/(m·s-1) 沿X轴最大位移/m 沿Y轴最大位移/m 由开伞到着陆总时间/s
    无风 5.05 17.10 0 22.82
    顺风:1 m/s 5.16 34.04 0 21.44
    逆风:1 m/s 5.22 0.36 0 21.24
    正侧风:1 m/s 4.23 15.20 40.56 25.28
    逆侧风:1 m/s 4.23 15.20 -40.56 25.28
    下载: 导出CSV
  • [1] WU M J, XIAO T H, ANG H S, et al.Optimal flight planning for a z-shaped morphing-wing solar-powered unmanned aerial vehicle[J].Journal of Guidance, Control, and Dynamics, 2018, 41(2):497-504. doi: 10.2514/1.G003000
    [2] 张健, 张德虎.高空长航时太阳能无人机总体设计要点分析[J].航空学报, 2016, 37(S1):S1-S7. http://d.old.wanfangdata.com.cn/Periodical/hkxb2016z1001

    ZHANG J, ZHANG D H.Essential of configuration design of HALE solar-powered UAVs[J].Acta Aeronautica et Astronautica Sinca, 2016, 37(S1):S1-S7(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb2016z1001
    [3] GARRARD W L.Application of inflation theories to preliminary parachute force and stress analyses: AIAA-91-0862[R].Reston: AIAA, 1991.
    [4] YAVUZ T.The Equation of motion for a parachute system descending through a real fluid[J].Aeronautical Journal, 1985, 89(889):334-348. http://cn.bing.com/academic/profile?id=d7c811538002e1bbc7b19d11c87be1ee&encoded=0&v=paper_preview&mkt=zh-cn
    [5] IBRAHIM S K, ENGDAHL R A.Parachute dynamics and stability analysis: NASA-CR-120326[R].Washington, D.C.: NASA, 1974.
    [6] FALLON II E J.Parachute dynamics and stability analysis of the queen match recovery system: AIAA-91-0879-CP[R].Restor: AIAA, 1991.
    [7] WOLF D.Dynamic stability of a nonrigid parachute and payload system[J].Journal of Aircraft, 1971, 8(8):604-609. http://cn.bing.com/academic/profile?id=ae5e00566c735ce6f0597f9ad80cf1ed&encoded=0&v=paper_preview&mkt=zh-cn
    [8] 程文科, 杨小伟, 秦子增.物伞系统动力学特性研究[J].国防科技大学学报, 1998, 20(4), 27-30. http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041504.htm

    CHENG W K, YANG X W, QIN Z Z.Analysis of the dynamic performance of a parachute and payload system[J].Journal of National University of Defense Technology, 1998, 20(4), 27-30(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041504.htm
    [9] TOWNSEND M A.Kane's equations, Lagrange's equations, and virtual work[J].Journal of Guidance, Control, and Dynamics, 1992, 15(1):277-280. doi: 10.2514/3.20832
    [10] KANE T R, LIKENS P W, LEVINSON D A.Spacecraft dynamics[M].New York:McGraw-Hill Book Company, 1983.
    [11] ZHAO Z J, REN G X.Multibody dynamic approach of flight dynamics and nonlinear aeroelasticity of flexible aircraft[J].AIAA Journal, 2011, 49(1):41-53. doi: 10.2514/1.45334
    [12] HOGAN F R, FORBES J R.Modeling of spherical robots rolling on generic surfaces[J].Multibody System Dynamics, 2015, 35(1):91-109. http://cn.bing.com/academic/profile?id=4440f0f89032a9569a9536728f251873&encoded=0&v=paper_preview&mkt=zh-cn
    [13] CHANG L B, HU B Q, CHANG G B.Modified unscented quaternion estimator based on quaternion averaging[J].Journal of Guidance, Control, and Dynamics, 2014, 37(1):305-308. doi: 10.2514/1.61723
    [14] 郭鹏.大型降落伞开伞过程研究[D].长沙: 国防科技大学, 2012: 72-80. http://cdmd.cnki.com.cn/Article/CDMD-90002-1014047996.htm

    GUO P.Research on the opening process of large parachute system[D].Changshan: National University of Defense Technology, 2012: 72-80(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-90002-1014047996.htm
    [15] 夏丹, 程维山, 刘考军, 等.基于Kane方法的仿鱼机器人波状游动的动力学建模[J].机械工程学报, 2009, 45(6):41-49. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb200906005

    XIA D, CHEN W S, LIU K J, et al.Dynamic modeling of a fishlike robot with undulatory motion based on Kane's method[J].Journal of Mechanical Engineering, 2009, 45(6):41-49(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb200906005
    [16] 荣伟, 包进进.火星大气对降落伞充气性能影响的初步探讨[J].航天返回与遥感, 2017, 38(4):1-4. doi: 10.3969/j.issn.1009-8518.2017.04.001

    RONG W, BAO J J.The primary studies on the effect of martian atmosphere on parachute inflation performances[J].Spacecraft Recovery & Remote Sensing, 2017, 38(4):1-4(in Chinese). doi: 10.3969/j.issn.1009-8518.2017.04.001
    [17] 姜海波, 曹树良, 程忠庆.平板大攻角扰流升力和阻力系数的计算[J].应用力学学报, 2011(5):518-520. http://www.cnki.com.cn/Article/CJFDTotal-YYLX201105015.htm

    JIANG H B, CAO S L, CHENG Z Q.Lift and drag coefficients of flow around a flat plate at high attack angles[J].Chinese Journal of Applied Mechanics, 2011(5):518-520(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-YYLX201105015.htm
    [18] 陈迎春, 张攀峰, 王晋军.绕流片分离流动特性的数值研究[J].北京航空航天大学学报, 2004, 30(12):1221-1224. doi: 10.3969/j.issn.1001-5965.2004.12.020

    CHEN Y C, ZHANG P F, WANG J J.Numerical simulation of separation flow around fiaps with varied gap size[J].Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(12):1221-1224(in Chinese). doi: 10.3969/j.issn.1001-5965.2004.12.020
    [19] TARN T J, SHOULTS G A, YAHG S P.A dynamic model of underwater vehicle with a robotics manipulator using Kane's method[J].Autonomous Robotics, 1996, 3(2-3):269-283 doi: 10.1007/BF00141159
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  42
  • PDF下载量:  494
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 录用日期:  2018-11-23
  • 网络出版日期:  2019-06-20

目录

    /

    返回文章
    返回
    常见问答