[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2012, Vol. 38 Issue (6) :823-828    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
����ƫ������Ƽ�������Ӱ��
������1, ���۾�1, ����2, ���ĺ�3*
1. �������պ����ѧ, ����������������ص�ʵ����,, ���� 100191;
2. �������պ����ѧ, �����ѧԺ, ���� 100191;
3. �������պ����ѧ, ���������缼���ص�ʵ����,, ���� 100191
Effect of rating residual on recommendation quality
Hu Biyun1, Li Zhoujun1, Wang Jun2, Chao Wenhan3*
1. State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. School of Computer Science and Technology, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
3. Key Laboratory of Network Technology of Beijing, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

ժҪ
�����
�������
Download: PDF (444KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ �������Ϸ���������ƫ������Ƽ�������Ӱ��;����DZ��ƫ�ü���֪���ֶ�����ƫ����ж���,����DZ��ƫ��ͨ���������ѧģ�ͼ���ó�;ͨ���趨��ͬ������ƫ��ˮƽ,������ƫ���Ӱ�������ʵ����֤.���۷�����ʵ����֤����:����ƫ��ɵ����Ƽ�׼ȷ�ȼ����Ƕ��½�;���ڸ���������������,Эͬ�����㷨��Ϊ�û������õ��Ƽ�.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
������
���۾�
����
���ĺ�
�ؼ����� �˹�����   �źŹ�����Ԥ��   ��Ϣ����   ����ƫ��   ��������   Эͬ����   �Ƽ�׼ȷ��   ���Ƕ�     
Abstract�� The effect of the rating residual on recommendation quality was analyzed. The rating residual was measured through user ratings and latent preferences. Latent preferences were computed with psychometric models. With different levels of rating residual, the effect of the rating residual was experimentally evaluated on real world datasets. Theoretical analysis and experimental results show that rating residual has negative effects on recommendation accuracy and coverage. Based on high quality of data, collaborative filtering algorithms can make precise recommendations for users.
Keywords�� artificial intelligence   signal filtering and prediction   information retrieval   rating residual   data quality   collaborative filtering   recommendation accuracy   coverage     
Received 2011-03-18;
Fund:������Ȼ��ѧ����������Ŀ(61170189,60973105);����������������ص�ʵ���������о�����������Ŀ(SKLSDE-2011ZX-03)
���ñ���:   
������, ���۾�, ����, ���ĺ�.����ƫ������Ƽ�������Ӱ��[J]  �������պ����ѧѧ��, 2012,V38(6): 823-828
Hu Biyun, Li Zhoujun, Wang Jun, Chao Wenhan.Effect of rating residual on recommendation quality[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2012,V38(6): 823-828
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2012/V38/I6/823
Copyright 2010 by �������պ����ѧѧ��