文章快速检索 高级检索
   首页  期刊介绍  编委会  投稿指南  期刊订阅  下载中心  留 言 板  联系我们
北京航空航天大学学报 2013, Vol. 39 Issue (3) :344-348    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
R*-树结点自适应聚类分簇算法
孙殿柱, 孙永伟, 李延瑞, 宋洋*
山东理工大学 机械工程学院, 淄博 255091
Node splitting algorithm of R*-tree based on self-adaptation clustering
Sun Dianzhu, Sun Yongwei, Li Yanrui, Song Yang*
School of Mechanical Engineering, Shandong University of Technology, Zibo 255091, China

摘要
参考文献
相关文章
Download: PDF (0KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为提高逆向工程中点云、三角网格等数据的索引效率,提出一种R*-树结点自适应聚类分簇算法,采用均匀分布数据作为参考点集,基于间隙统计法及k-均值算法获得使结点相似度之和开始收敛的自然簇数,进而实现R*-树的结点自适应聚类分簇.实验证明,该算法可实现各类复杂几何对象的R*-树结点分簇问题,并能降低R*-树结点分簇的参数依赖性,减少结点重合度,提高R*-树空间数据查询效率.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词R*-树   自适应聚类   结点分簇   结点相似度   间隙统计法   k-均值     
Abstract: A node splitting algorithm of R*-tree based on self-adaptation clustering was proposed to improve the spatial query efficiency of the point cloud, triangle mesh and etc. Picking some data points as reference point set with uniform sampling. The true number of clusters, which made the totality comparability value of nodes to become convergence, was obtained based on the Gap statistical method and k-means algorithm. According to the true number of clusters, the node of R*-tree was split without human intervention. Experiment results prove that the algorithm can solve the node clustering problems for any complex geometric object, reduce the parameters dependence and nodes- coincidence degree of node splitting of R*-tree, and improve the R*-tree spatial query efficiency.
KeywordsR*-tree   self-adaptation clustering   node splitting   comparability value   gap statistic   k-means     
Received 2012-03-02;
Fund:

国家自然科学基金资助项目(51075247);山东省自然科学基金资助项目(ZR2010EM008)

About author: 孙殿柱(1956-),男,山东烟台人,教授,dianzhus@sdut.edu.cn.
引用本文:   
孙殿柱, 孙永伟, 李延瑞, 宋洋.R*-树结点自适应聚类分簇算法[J]  北京航空航天大学学报, 2013,V39(3): 344-348
Sun Dianzhu, Sun Yongwei, Li Yanrui, Song Yang.Node splitting algorithm of R*-tree based on self-adaptation clustering[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2013,V39(3): 344-348
链接本文:  
http://bhxb.buaa.edu.cn//CN/     或     http://bhxb.buaa.edu.cn//CN/Y2013/V39/I3/344
Copyright 2010 by 北京航空航天大学学报