留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高电导率、低溶胀的碱性聚电解质膜的实现策略

相艳 司江菊

相艳, 司江菊. 高电导率、低溶胀的碱性聚电解质膜的实现策略[J]. 北京航空航天大学学报, 2015, 41(6): 961-968. doi: 10.13700/j.bh.1001-5965.2015.0174
引用本文: 相艳, 司江菊. 高电导率、低溶胀的碱性聚电解质膜的实现策略[J]. 北京航空航天大学学报, 2015, 41(6): 961-968. doi: 10.13700/j.bh.1001-5965.2015.0174
XIANG Yan, SI Jiangju. Strategies for reconciling tradeoff between conductivity and swelling in alkaline polymer electrolytes membrane[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 961-968. doi: 10.13700/j.bh.1001-5965.2015.0174(in Chinese)
Citation: XIANG Yan, SI Jiangju. Strategies for reconciling tradeoff between conductivity and swelling in alkaline polymer electrolytes membrane[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 961-968. doi: 10.13700/j.bh.1001-5965.2015.0174(in Chinese)

高电导率、低溶胀的碱性聚电解质膜的实现策略

doi: 10.13700/j.bh.1001-5965.2015.0174
基金项目: 国家自然科学基金(1422301,U1137602); 国家"863"计划(2013AA031902)
详细信息
    通讯作者:

    相艳(1974—),女,山东曲阜人,教授,xiangy@buaa.edu.cn,主要研究方向为新能源材料与器件的设计与计算模拟.

  • 中图分类号: O646

Strategies for reconciling tradeoff between conductivity and swelling in alkaline polymer electrolytes membrane

  • 摘要: 碱性聚电解质膜燃料电池(APEMFC)作为质子交换膜膜燃料电池的替代,由于其可以使用非贵金属催化剂、氧还原反应动力学快及成本低等众多优点,近年来获得了长足的发展.作为其中一个关键部件,碱性聚电解质(APE)膜在APEMFC中扮演着重要的角色.然而,由于OH-的淌度明显低于H+,碱性聚电解质膜的性能尤其是电导率相对较低.通过提高聚合物中离子基团的接枝度(GD),获得高的离子浓度可以在一定程度解决这个问题.但是,这种方法往往导致聚合物膜过度亲水溶胀,机械强度大幅下降.由此看来,电导率和溶胀成为了两个影响电池性能的异常重要但又相互矛盾的因素.本文综述了近些年来解决这个矛盾的一些策略, 如物理手段、化学交联、离子基团在侧链上的富集以及通过亲水/疏水相分离结构构建高效的离子传输通道等.这些手段都能在一定程度上实现在低的吸水和溶胀下获得高的电导率.

     

  • [1] Asazawa K, Yamada K, Tanaka H, et al.A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles[J].Angewandte Chemie International Edition, 2007, 46(42):8024-8027.
    [2] Sheng W C, Bivens A P, Myint M, et al.Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes[J].Energy and Environmental Science, 2014, 7(5):1719-1724.
    [3] Deavin O I, Murphy S, Ong A L, et al.Anion-exchange membranes for alkaline polymer electrolyte fuel cells:Comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups[J].Energy and Environmental Science, 2012, 5(9):8584-8597.
    [4] Gu S, Cai R, Luo T, et al.Quaternary phosphonium-based polymers as hydroxide exchange membranes[J].ChemSusChem, 2010, 3(5):555-558.
    [5] Gu S, Cai R, Luo T, et al.A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells[J].Angewandte Chemie International Edition, 2009, 48(35):6499-6502.
    [6] Wang J H, Gu S, Kaspar R B, et al.Stabilizing the imidazolium cation in hydroxide-exchange membranes for fuel cells[J].ChemSusChem, 2013, 6(11):2079-2082.
    [7] Poynton S D, Slade R C T, Omasta T J, et al.Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells[J].Journal of Materials Chemistry A, 2014, 2(14):5124-5130.
    [8] Lin X C, Varcoe J R, Poynton S D, et al.Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells[J].Journal of Materials Chemistry A, 2013, 1(24):7262-7269.
    [9] Li N W, Guiver M D, Binder W H.Towards high conductivity in anion-exchange membranes for alkaline fuel cells[J].ChemSusChem, 2013, 6(8):1376-1383.
    [10] Lu S F, Pan J, Huang A B, et al.Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts[J].Proceedings of the National Academy of Sciences, 2008, 105(52):20611-20614.
    [11] Pan J, Lu S F, Li Y, et al.High-performance alkaline polymer electrolyte for fuel cell applications[J].Advanced Functional Materials, 2010, 20(2):312-319.
    [12] Varcoe J R, Atanassov P, Dekel D R, et al.Anion-exchange membranes in electrochemical energy systems[J].Energy and Environmental Science, 2014, 7(10):3135-3191.
    [13] 侯宏英.碱性固体燃料电池碱性聚合物电解质膜的最新研究进展[J].物理化学学报, 2014, 30(8):1393-1407. Hou H Y.Recent research progress in alkaline polymer electrolyte membranes for alkaline solid fuel cells[J].Acta Physico-Chimica Sinica, 2014, 30(8):1393-1407(in Chinese).
    [14] Tanaka M, Fukasawa K, Nishino E, et al.Anion conductive block poly(arylene ether)s:Synthesis, properties, and application in alkaline fuel cells[J].Journal of the American Chemical Society, 2011, 133(27):10646-10654.
    [15] Robertson N J, Kostalik H A, Clark T J, et al.Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications[J].Journal of the American Chemical Society, 2010, 132(10):3400-3404.
    [16] Tanaka M, Koike M, Miyatake K, et al.Anion conductive aromatic ionomers containing fluorenyl groups[J].Macromolecules, 2010, 43(6):2657-2659.
    [17] Hibbs M R, Fujimoto C H, Cornelius C J.Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells[J].Macromolecules, 2009, 42(21):8316-8321.
    [18] Clark T J, Robertson N J, Kostalik IV H A, et al.A ring-opening metathesis polymerization route to alkaline anion exchange membranes:Development of hydroxide-conducting thin films from an ammonium-functionalized monomer[J].Journal of the American Chemical Society, 2009, 131(36):12888-12889.
    [19] Pan J, Chen C, Zhuang L, et al.Designing advanced alkaline polymer electrolytes for fuel cell applications[J].Accounts of Chemical Research, 2011, 45(3):473-481.
    [20] Wang X, Li M Q, Golding B T, et al.A polytetrafluoroethylene-quaternary1, 4-diazabicyclo-[2.2.2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells[J].International Journal of Hydrogen Energy, 2011, 36(16):10022-10026.
    [21] Jung H, Fujii K, Tamaki T, et al.Low fuel crossover anion exchange pore-filling membrane for solid-state alkaline fuel cells[J].Journal of Membrane Science, 2011, 373(1-2):107-111.
    [22] Zhang F X, Zhang H M, Ren J X, et al.PTFE based composite anion exchange membranes:Thermally induced in situ polymerization and direct hydrazine hydrate fuel cell application[J].Journal of Materials Chemistry, 2010, 20(37):8139-8146.
    [23] Luo Y T, Guo J C, Wang C S, et al.Fuel cell durability enhancement by crosslinking alkaline anion exchange membrane electrolyte[J].Electrochemistry Communications, 2012, 16(1):65-68.
    [24] Gubler L.Polymer design strategies for radiation-grafted fuel cell membranes[J].Advanced Energy Materials, 2014, 4(3):DOI: 10.1002/aenm.201300827.
    [25] Pan J, Li Y, Zhuang L, et al.Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90℃[J].Chemical Communications, 2010, 46(45):8597-8599.
    [26] 潘婧, 谭力盛, 庄林, 等.可在90℃工作的自交联碱性聚合物电解质膜的制备及表征[J].中国科学:化学, 2011, 41(12):1848-1856. Pan J, Tan L S, Zhuang L, et al.Synthesis and characterization of self-crosslinked alkaline polymer electrolytes operable at 90℃[J].Scientia Sinica:Chimica, 2011, 41(12):1848-1856(in Chinese).
    [27] Lin X C, Liu Y B, Poynton S D, et al.Cross-linked anion exchange membranes for alkaline fuel cells synthesized using a solvent free strategy[J].Journal of Power Sources, 2013, 233:259-268.
    [28] Wang J J, He G H, Wu X M, et al.Crosslinked poly (ether ether ketone) hydroxide exchange membranes with improved conductivity[J].Journal of Membrane Science, 2014, 459:86-95.
    [29] Katzfuβ A, Gogel V, Jörissen L, et al.The application of covalently cross-linked BrPPO as AEM in alkaline DMFC[J].Journal of Membrane Science, 2013, 425-426:131-140.
    [30] Wang W P, Wang S B, Li W W, et al.Synthesis and characterization of a fluorinated cross-linked anion exchange membrane[J].International Journal of Hydrogen Energy, 2013, 38(25):11045-11052.
    [31] Zhang S M, Li C P, Xie X F, et al.Novel cross-linked anion exchange membranes with diamines as ionic exchange functional groups and crosslinking groups[J].International Journal of Hydrogen Energy, 2014, 39(25):13718-13724.
    [32] Wang L Z, Hickner M A.Low-temperature crosslinking of anion exchange membranes[J]. Polymer Chemistry, 2014, 5(8):2928-2935.
    [33] Pan J, Li Y, Han J J, et al.A strategy for disentangling the conductivity-stability dilemma in alkaline polymer electrolytes[J].Energy and Environmental Science, 2013, 6(10):2912-2915.
    [34] Si J J, Lu S F, Xu X, et al.A gemini quaternary ammonium poly(ether ether ketone) anion-exchange membrane for alkaline fuel cell:Design, synthesis, and properties[J].ChemSusChem, 2014, 7(12):3389-3395.
    [35] Li Q, Liu L, Miao Q Q, et al.A novel poly (2, 6-dimethyl-1, 4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes[J].Chemical Communications, 2014, 50(21):2791-2793.
    [36] Ran J, Wu L, Xu T W.Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers[J].Polymer Chemistry, 2013, 4(17):4612-4620.
    [37] Mauritz K A, Moore R B.State of understanding of nafion[J].Chemical Reviews, 2004, 104(10):4535-4586.
    [38] Rebeck N T, Li Y F, Knauss D M.Poly (phenylene oxide) copolymer anion exchange membranes[J].Journal of Polymer Science Part B:Polymer Physics, 2013, 51(24):1770-1778.
    [39] Li Q, Liu L, Miao Q Q, et al.Hydroxide-conducting polymer electrolyte membranes from aromatic aba triblock copolymers[J].Polymer Chemistry, 2014, 5(7):2208-2213.
    [40] Tsai T-H, Maes A M, Vandiver M A, et al.Synthesis and structure-conductivity relationship of polystyrene-block-poly (vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells[J].Journal of Polymer Science Part B:Polymer Physics, 2013, 51(24):1751-1760.
    [41] Disabb-Miller M L, Johnson Z D, Hickner M A.Ion motion in anion and proton-conducting triblock copolymers[J].Macromolecules, 2013, 46(3):949-956.
    [42] Price S C, Ren X M, Jackson A C, et al.Bicontinuous alkaline fuel cell membranes from strongly self-segregating block copolymers[J].Macromolecules, 2013, 46(18):7332-7340.
    [43] Li N W, Yan T Z, Li Z, et al.Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes[J].Energy and Environmental Science, 2012, 5(7):7888-7892.
    [44] Li N W, Leng Y J, Hickner M A, et al.Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells[J].Journal of the American Chemical Society, 2013, 135(27):10124-10133.
    [45] Li N W, Wang L Z, Hickner M.Cross-linked comb-shaped anion exchange membranes with high base stability[J].ChemicalCommunications, 2014, 50(31):4092-4095.
    [46] Rao A H N, Nam S Y, Kim T-H.Comb-shaped alkyl imidazolium-functionalized poly(arylene ether sulfone)s as high performance anion-exchange membranes[J].Journal of Materials Chemistry A, 2015, 3(16):8571-8580.
    [47] Pan J, Chen C, Li Y, et al.Constructing ionic highway in alkaline polymer electrolytes[J].Energy and Environmental Science, 2014, 7(1):354-360.
    [48] He S S, Frank C W.Facilitating hydroxide transport in anion exchange membranes via hydrophilic grafts[J].Journal of Materials Chemistry A, 2014, 2(39):16489-16497.
  • 加载中
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  62
  • PDF下载量:  568
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-26
  • 网络出版日期:  2015-06-20

目录

    /

    返回文章
    返回
    常见问答