留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙度对涡轮叶片流动转捩及传热特性的影响

李虹杨 郑赟

李虹杨, 郑赟. 粗糙度对涡轮叶片流动转捩及传热特性的影响[J]. 北京航空航天大学学报, 2016, 42(10): 2038-2047. doi: 10.13700/j.bh.1001-5965.2015.0659
引用本文: 李虹杨, 郑赟. 粗糙度对涡轮叶片流动转捩及传热特性的影响[J]. 北京航空航天大学学报, 2016, 42(10): 2038-2047. doi: 10.13700/j.bh.1001-5965.2015.0659
LI Hongyang, ZHENG Yun. Effect of surface roughness on flow transition and heat transfer of turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2038-2047. doi: 10.13700/j.bh.1001-5965.2015.0659(in Chinese)
Citation: LI Hongyang, ZHENG Yun. Effect of surface roughness on flow transition and heat transfer of turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2038-2047. doi: 10.13700/j.bh.1001-5965.2015.0659(in Chinese)

粗糙度对涡轮叶片流动转捩及传热特性的影响

doi: 10.13700/j.bh.1001-5965.2015.0659
详细信息
    作者简介:

    李虹杨,男,博士研究生。主要研究方向:非定常流动及换热的数值模拟,流、热耦合数值模拟。E-mail:buaalihy@hotmail.com;郑赟男,博士,讲师。主要研究方向:计算流体力学,叶轮机械流、热、固耦合仿真。Tel.:010-82338753,E-mail:zheng_yun@buaa.edu.cn

    通讯作者:

    郑赟,Tel.:010-82338753,E-mail:zheng_yun@buaa.edu.cn

  • 中图分类号: V211.3

Effect of surface roughness on flow transition and heat transfer of turbine blade

  • 摘要: 为研究表面粗糙度对涡轮叶片流动转捩以及传热特性的影响,在自行开发的CFD程序平台上提出了对γ-Reθ转捩模型的粗糙度修正方法,并参考平板绕流和涡轮叶栅的实验数据对该方法进行验证。考虑粗糙度效应的影响,对Mark Ⅱ涡轮导叶5411工况进行数值模拟,得到如下结论:表面粗糙度对层流边界层换热系数影响不大,而对湍流边界层则有较大影响,进而显著改变壁面温度分布;与光滑壁面相比,5μm的等效沙粒粗糙度使吸力面湍流区域壁面温度升高约5.7K,100μm粗糙度使壁面温度升高28.4 K,增幅达5%左右;当壁面粗糙度较低时,激波干涉对吸力面边界层的转捩起主导作用,而当粗糙度大于某临界值时,其作用会使转捩位置突然变化,本算例中该临界值近似为150μm。

     

  • [1] BUNKER R S.A review of shaped hole turbine film-cooling technology[J].Journal of Heat Transfer,2005,127(4):441-453.
    [2] YEH F C,STEPKA F S.Review and status of heat-transfer technology for internal passages of air-cooled turbine blades:NASA-TP-2232[R].Washington,D.C:NASA,1984.
    [3] 李本威,李冬,沈伟,等.涡轮叶片粗糙度对其性能衰退的影响研究[J].航空计算技术,2009,39(5):26-29.LI B W,LI D,SHEN W,et al.Research on turbine lamina roughness influence on its performance declination[J].Aeronautical Computing Technique,2009,39(5):26-29(in Chinese).
    [4] BOGARD D G,SCHMIDT D L,TABBITA M.Characterization and laboratory simulation of turbine airfoil surface roughness and associated heat transfer[J].Journal of Turbomachinery,1998,120(2):337-342.
    [5] BONS J P.A review of surface roughness effects in gas turbines[J].Journal of Turbomachinery,2010,132(2):021004.
    [6] TAYLOR R P.Surface roughness measurements on gas turbine blades[J].Journal of Turbomachinery,1990,112(2):175-180.
    [7] BONS J P,TAYLOR R P,MCCLAIN S T,et al.The many faces of turbine surface roughness[J].Journal of Turbomachinery,2001,123(4):739-748.
    [8] BARLOW D N,KIM Y W,FLORSCHUETZ LW.Transient liquid crystal technique for convective heat transfer on rough surfaces[J].Journal of Turbomachinery,1997,119(1):14-22.
    [9] HOSNI M H,COLEMAN H W,TAYLOR R P.Rough-wall heat transfer in turbulent boundary layers[J].International Journal of Fluid Mechanics,1998,25(1-3):212-219.
    [10] ABUAF N N,BUNKER R S,LEE C P.Effects of surface roughness on heat transfer and aerodynamic performance of turbine airfoils[J].Journal of Turbomachinery,1998,120(3):522-529.
    [11] BUNKER R S.Separate and combined effects of surface roughness and turbulence intensity on vane heat transfer:97-GT-135[R].New York:ASME,1997.
    [12] BOYLE R J,SPUCKLER C M,LUCCI B L,et al.Infrared low-temperature turbine vane rough surface heat transfer measurements[J].Journal of Turbomachinery,2001,123(1):168-177.
    [13] BLAIR M F.An experimental study of heat transfer in a large-scale turbine rotor passage[J].Journal of Turbomachinery,1994,116(1):1-13.
    [14] STRIPF M,SCHULZ A,BAUER H J,et al.Extended models for transitional rough wall boundary layers with heat transfer-Part Ⅰ:Model formulations[J].Journal of Turbomachinery,2009,131(3):1263-1275.
    [15] STRIPF M,SCHULZ A,BAUER H J,et al.Extended models for transitional rough wall boundary layers with heat transfer-Part Ⅱ:Model validation and benchmarking[J].Proceedings of the ASME Turbo Expo,2008,131(3):1277-1289.
    [16] TAYLOR R P,COLEMAN H W,HODGE B K.A discrete element prediction approach for turbulent flow over rough surfaces[C]//Viscous and Interacting Flow Field Effects.1984,1:1-11.
    [17] TAYLOR R P,COLEMAN H W,HODGE B K.Prediction of turbulent rough-wall skin friction using a discrete element approach[J].Journal of Fluids Engineering,1985,107(2):251-257.
    [18] BOYLE R J,STRIPF M.Simplified approach to predicting rough surface transition[J].Journal of Turbomachinery,2009,131(4):10-20.
    [19] LORENZ M,SCHULZ A,BAUER H J.Predicting rough wall heat transfer and skin friction in transitional boundary layers-A new correlation for bypass transition onset[J].Journal of Turbomachinery,2013,135(4):10-21.
    [20] HELLSTEN A,SEPPO L.Extension of the k-ω SST turbulence model for flows over rough surfaces:AIAA-1997-3577[R].Reston:AIAA,1997.
    [21] AUPOIX B B.Roughness corrections for the k-ω shear stress transport model:Status and proposals[J].ASME,Journal of Fluids Engineering,2014,137(2):021202.
    [22] BELLUCCI J,RUBECHINI F,MARCOCINI M,et al.The influence of roughness on a high-pressure steam turbine stage:An experimental and numerical study[J].Journal of Engineering for Gas Turbines & Power,2015,137(1):012602.
    [23] LANGTRY R B,MENTER F R.Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J].AIAA Journal,2009,47(12):2894-2906.
    [24] MENTER F R,LANGTRY R B,VÖLKER S.Transition modelling for general purpose CFD codes[J].Flow,Turbulence and Combustion,2006,77(1-4):277-303.
    [25] STRIPF M,SCHULZ A,BAUER H J.Modeling of rough wall boundary layer transition and heat transfer on turbine airfoils[J].Proceedings of the ASME Turbo Expo,2006,130(2):1139-1151.
    [26] 陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,2002:312-314.CHEN M Z.Fundamentals of viscous fluid dynamics[M].Beijing:Higher Education Press,2002:312-314(in Chinese).
    [27] 郑赟.基于非结构网格的气动弹性数值方法研究[J].航空动力学报,2009,24(9):2069-2077.ZHENG Y.Computational aero-elasticity with an unstructured grid method[J].Journal of Aerospace Power,2009,24(9):2069-2077(in Chinese).
    [28] 肖大启,郑赟,杨慧.轴向间距对转子叶片气动激励的影响[J].航空动力学报,2012,27(10):2307-2313.XIAO D Q,ZHENG Y,YANG H.Effect of axial spacing on aerodynamic excitation of rotor blade[J].Journal of Aerospace Power,2012,27(10):2307-2313(in Chinese).
    [29] 郑赟,李虹杨,刘大响.γ-Reθ转捩模型在高超声速下的应用及分析[J].推进技术,2014,35(3):296-304.ZHENG Y,LI H Y,LIU D X.Application and analysis of γ-Reθ transition model in hypersonic flow[J].Journal of Propulsion Technology,2014,35(3):296-304(in Chinese).
    [30] 郑赟,李虹杨.基于新的经验关联公式的γ-Reθ转捩模型在高超声速流动中的应用[J].推进技术,2015,36(6):839-845.ZHENG Y,LI H Y.Application of γ-Reθ transition model in hypersonic flow based on new correlation equation[J].Journal of Propulsion Technology,2015,36(6):839-845(in Chinese).
    [31] WANG T,MATTHEW C R.Effect of elevated free-stream turbulence on transitional flow heat transfer over dual-scaled rough surfaces[J].Journal of Heat Transfer,2005,127(4):393-403.
    [32] PINSON M W,WANG T.Effect of two-scale roughness on boundary layer transition over a heated flat plate:Part 2-Boundary layer structure[J].Journal of Turbomachinery,2000,122(2):308-316.
    [33] STRIPF M.Surface roughness effects on external heat transfer of a HP turbine vane[J].Journal of Turbomachinery,2005,127(1):200-208.
    [34] HYLTON L D,MIHELC M S,TURNER E R,et al.Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes[C]//AAS/Division of Dynamical Astronomy Meeting.1983.
  • 加载中
计量
  • 文章访问数:  1134
  • HTML全文浏览量:  79
  • PDF下载量:  613
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-13
  • 网络出版日期:  2016-10-20

目录

    /

    返回文章
    返回
    常见问答