留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干扰观测器在一种非线性刚度驱动器中的应用

高冬 宋智斌 赵亚茹

高冬, 宋智斌, 赵亚茹等 . 干扰观测器在一种非线性刚度驱动器中的应用[J]. 北京航空航天大学学报, 2018, 44(6): 1328-1336. doi: 10.13700/j.bh.1001-5965.2017.0477
引用本文: 高冬, 宋智斌, 赵亚茹等 . 干扰观测器在一种非线性刚度驱动器中的应用[J]. 北京航空航天大学学报, 2018, 44(6): 1328-1336. doi: 10.13700/j.bh.1001-5965.2017.0477
GAO Dong, SONG Zhibin, ZHAO Yaruet al. Disturbance observer applied in a nonlinear stiffness compliant actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1328-1336. doi: 10.13700/j.bh.1001-5965.2017.0477(in Chinese)
Citation: GAO Dong, SONG Zhibin, ZHAO Yaruet al. Disturbance observer applied in a nonlinear stiffness compliant actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1328-1336. doi: 10.13700/j.bh.1001-5965.2017.0477(in Chinese)

干扰观测器在一种非线性刚度驱动器中的应用

doi: 10.13700/j.bh.1001-5965.2017.0477
基金项目: 

国家自然科学基金 51475332

教育部高等学校创新引智计划(“111”计划) B16034

天津市自然科学基金 17JCZDJC30300

详细信息
    作者简介:

    高冬  男, 硕士研究生。主要研究方向:柔顺驱动控制

    宋智斌  男, 博士, 副教授, 博士生导师。主要研究方向:机构学与机器人学、康复机器人、人机力觉交互

    赵亚茹  女, 硕士研究生。主要研究方向:柔顺驱动器刚度研究

    通讯作者:

    宋智斌, E-mail:songzhibin@tju.edu.cn

  • 中图分类号: TP242

Disturbance observer applied in a nonlinear stiffness compliant actuator

Funds: 

National Natural Science Foundation of China 51475332

Programme of Introducing Talents of Discipline to Universities ("111 Program") B16034

National Natural Science Foundation of Tianjin, China 17JCZDJC30300

More Information
  • 摘要:

    基于“小负载,低刚度;大负载,高刚度”的非线性刚度驱动器(NSCA)优化了可变刚度驱动器(VSA)的工作区间,具有交互力小时力分辨率高,交互力大时响应速度快的优点。但在复杂的人机交互控制过程中,由于难以对干扰和噪声建立准确的数学模型,故而严重影响到系统的控制精度。因此,本文利用基于观测估计干扰并实施补偿的干扰观测器(DOB)解决非线性刚度驱动器的此类问题。首先,根据非线性刚度驱动器动力学模型建立了控制系统状态方程以及干扰观测器,利用李雅普诺夫方法分析系统稳定性并给出了稳定条件;然后,根据该稳定条件将干扰观测器算法应用于非线性刚度驱动器控制系统中得到实验数据。最后,实验结果表明,采用干扰观测器算法将非线性刚度驱动器在阻抗控制模式下的刚度误差降低了85.71%,大幅度提高了驱动器控制精度。

     

  • 图 1  非线性弹性体

    Figure 1.  A nonlinear elastic component

    图 2  非线性刚度驱动器三维模型

    Figure 2.  3D model of nonlinear stiffness compliant actuator

    图 3  带外负载的非线性刚度驱动器模型

    Figure 3.  Model of NSCA with external load

    图 4  基于非线性刚度驱动器力矩控制下的干扰观测器控制框图

    Figure 4.  Block diagram of DOB control based on torque control of NSCA

    图 5  实验平台设置简图

    Figure 5.  Systematic diagram of experimental platform

    图 6  通过转动驱动器末端进行实验

    Figure 6.  Experiment via rotating output shaft of actuator

    图 7  力矩控制中施加的干扰信号及未加入和加入干扰观测器的力矩控制实验结果

    Figure 7.  Disturbance signal in torque control and torque control experiment results with and without DOB

    图 8  未加入干扰观测器的低阻抗控制实验结果及低阻抗下非线性刚度驱动器实际表现刚度与期望阻抗模型刚度比较

    Figure 8.  Low impedance control experiment results without DOB and comparison between performed stiffness of NSCA and desired impedance stiffness under low impedance without DOB

    图 9  加入了干扰观测器的低阻抗控制实验结果和低阻抗下非线性刚度驱动器表现刚度与期望阻抗模型刚度比较

    Figure 9.  Low impedance control experiment results with DOB and comparison between performed stiffness of NSCAand desired impedance stiffness under low impedance with DOB

    图 10  未加入干扰观测器的高阻抗控制实验结果及高阻抗下非线性刚度驱动器实际表现刚度与期望阻抗模型刚度比较

    Figure 10.  High impedance control experiment results without DOB and comparison between performed stiffness of NSCA and desired impedance stiffness under high impedance without DOB

    图 11  加入了干扰观测器的高阻抗控制实验结果及高阻抗下非线性刚度驱动器实际表现刚度与期望阻抗模型刚度比较

    Figure 11.  High impedance control experiment results with DOB and comparison between performed stiffness of NSCA and desired impedance stiffness under high impedance with DOB

  • [1] GRIOLI G, WOLF S, GARABINI M, et al.Variable stiffness actuators:The user's point of view[J].International Journal of Robotics Research, 2015, 34(6):727-743. doi: 10.1177/0278364914566515
    [2] SCHIAVI R, GRIOLI G, SEN S, et al. VSA-Ⅱ: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 2008: 2171-2176.
    [3] BYRVAN H, SUGAR T G, VANDERBORGHT B, et al.Compliant actuator design[J].IEEE Robotics & Automation Magazine, 2009, 16(3):81-94. https://www.scientific.net/AMM.163.23
    [4] ERLER P, BECKERLE P, STRAH B, et al. Experimental comparison of nonlinear motion control methods for a variable stiffness actuator[C]//Biomedical Robotics & Biomechatronics. Piscataway, NJ: IEEE Press, 2014: 1045-1050.
    [5] SCHEPELMANN A, GEBERTH K A, GEYER H. Compact nonlinear springs with user defined torque-deflection profiles for series elastic actuators[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 2014: 3411-3416.
    [6] WOLF S, HIRZINGER G. A new variable stiffness design: Matching requirements of the next robot generation[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 2008: 1741-1746.
    [7] TORREALBA R R, UDELMAN S B.Design of cam shape for maximum stiffness variability on a novel compliant actuator using differential evolution[J].Mechanism & Machine Theory, 2016, 95:114-124. https://www.sciencedirect.com/science/article/pii/S0094114X15002074
    [8] JAFARI A, TSAGARAKIS N G, CALDWELL D G. AwAS-Ⅱ: A new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 2011: 4638-4643.
    [9] NICOLA S, MASAFUMI O.Design and Realization of a non-circular cable spool to synthesize a nonlinear rotational spring[J].Advanced Robotics, 2012, 26(3-4):234-251. doi: 10.1163/156855311X614545
    [10] PEW C, KLUTE G K.Design of lower limb prosthesis transverse plane adaptor with variable stiffness[J].Journal of Medical Devices, 2015, 9(3):035001. doi: 10.1115/1.4030505
    [11] AUSTIN J, SCHEPELMANN A, GEYER H. Control and evaluation of series elastic actuators with nonlinear rubber springs[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ: IEEE Press, 2015: 6563-6568.
    [12] PALLI G, BERSELLI G, MELCHIORRI C, et al.Design of a variable stiffness actuator based on flexures[J].Journal of Mechanisms & Robotics, 2011, 3(3):034501.
    [13] YU H, HUANG S, CHEN G, et al.Human-robot interaction control of rehabilitation robots with series elastic actuators[J].IEEE Transactions on Robotics, 2015, 31(5):1089-1100. doi: 10.1109/TRO.2015.2457314
    [14] NAKAO M, OHNISHI K, MIYACHI K. A robust decentralized joint control based on interference estimation[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 1987: 326-331.
    [15] SARIYILDIZ E, OHNISHI K.Analysis the robustness of control systems based on disturbance observer[J].International Journal of Control, 2013, 86(10):1733-1743. doi: 10.1080/00207179.2013.795663
    [16] SARIYILDIZ E, CHEN G, YU H. Robust position control of a novel series elastic actuator via disturbance observer[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ: IEEE Press, 2015: 5423-5428.
    [17] SARIYILDIZ E, OHNISHI K.Stability and robustness of disturbance-observer-based motion control systems[J].IEEE Transactions on Industrial Electronics, 2015, 62(1):414-422. doi: 10.1109/TIE.2014.2327009
    [18] 尹正男. 具有鲁棒性的最优干扰观测器的系统性设计及其应用[D]. 上海: 上海交通大学, 2012: 2-3.

    YIN Z N. Systematic design of optimal disturbance observer with robust performances and its application[D]. Shanghai: Shanghai Jiao Tong University, 2012: 2-3(in Chinese).
    [19] SARIYILDIZ E, OHNISHI K.A guide to design disturbance observer[J].Journal of Dynamic Systems Measurement & Control, 2013, 136(2):2483-2488. https://scholars.uow.edu.au/display/publication115264
    [20] LAN S B, SONG Z B.Design of a new nonlinear stiffness compliant actuator and its error compensation method[J].Journal of Robotics, 2016, 2016:7326905. https://www.researchgate.net/publication/309586340_Design_of_a_New_Nonlinear_Stiffness_Compliant_Actuator_and_Its_Error_Compensation_Method
    [21] CHEN W H, BALLANCE D J, GAWTHROP P J, et al.A nonlinear disturbance observer for robotic manipulators[J].IEEE Transactions on Industrial Electronics, 2000, 47(4):932-938. doi: 10.1109/41.857974
    [22] HOGAN N.Impedance control-An approach to manipulation.Ⅰ-Theory.Ⅱ-Implementation.Ⅲ-Applications[J].ASME Transactions Journal of Dynamic Systems & Measurement Control B, 1984, 107(1):304-313.
    [23] STIENENW A H, HEKMAN E E, TER B H, et al.Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation[J].IEEE Transactions on Bio-medical Engineering, 2010, 57(3):728-735. doi: 10.1109/TBME.2009.2018628
    [24] WANG P R, CHIU Y H, TSAI M S, et al. Estimation and evaluation of upper limb endpoint stiffness and joint torques for post-stroke rehabilitation[C]//World Congress on Medical Physics and Biomedical Engineering, 2009. Berlin: Springer, 2009: 44-47.
    [25] VITIELLO N, LENZI T, ROCCELLA S, et al.NEUROExos:A powered elbow exoskeleton for physical rehabilitation[J].IEEE Transactions on Robotics, 2013, 29(1):220-235. doi: 10.1109/TRO.2012.2211492
    [26] MALOSIO M, CAIMMI M, LEGNANI G, et al. LINarm: A low-cost variable stiffness device for upper-limb rehabilitation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ: IEEE Press, 2014: 3598-3603.
  • 加载中
图(11)
计量
  • 文章访问数:  506
  • HTML全文浏览量:  50
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-11
  • 录用日期:  2017-10-13
  • 网络出版日期:  2018-06-20

目录

    /

    返回文章
    返回
    常见问答