留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三床型机载制氧系统控制设计与实验验证

蒋东升 卜雪琴 林贵平 孙兵 黄俊 方玲 赵宏韬

蒋东升, 卜雪琴, 林贵平, 等 . 三床型机载制氧系统控制设计与实验验证[J]. 北京航空航天大学学报, 2018, 44(8): 1603-1608. doi: 10.13700/j.bh.1001-5965.2017.0748
引用本文: 蒋东升, 卜雪琴, 林贵平, 等 . 三床型机载制氧系统控制设计与实验验证[J]. 北京航空航天大学学报, 2018, 44(8): 1603-1608. doi: 10.13700/j.bh.1001-5965.2017.0748
JIANG Dongsheng, BU Xueqin, LIN Guiping, et al. Control design and experimental verification of three-bed onboard oxygen generation system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1603-1608. doi: 10.13700/j.bh.1001-5965.2017.0748(in Chinese)
Citation: JIANG Dongsheng, BU Xueqin, LIN Guiping, et al. Control design and experimental verification of three-bed onboard oxygen generation system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1603-1608. doi: 10.13700/j.bh.1001-5965.2017.0748(in Chinese)

三床型机载制氧系统控制设计与实验验证

doi: 10.13700/j.bh.1001-5965.2017.0748
详细信息
    作者简介:

    蒋东升, 男, 博士研究生。主要研究方向:机载分子筛制氧、电子氧调器

    卜雪琴, 女, 博士, 副教授, 硕士生导师。主要研究方向:飞行器环境控制、飞机防除冰

    通讯作者:

    卜雪琴, E-mail: buxueqin@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

Control design and experimental verification of three-bed onboard oxygen generation system

More Information
    Corresponding author: BU Xueqin, E-mail: buxueqin@buaa.edu.cn
  • 摘要:

    为解决两床型机载制氧系统在实际应用过程中出现的输出压力波动大及低空氧浓度偏高等问题,需研制与开发三床型机载制氧系统。为此,依据系统控制逻辑,采用电磁阀驱动电控气动阀循环工作的控制模式,开展了三床型机载制氧系统的控制设计,提出了高低空分段调节循环周期的控制方法,并在不同输入压力、流量条件下,对三床型机载制氧系统进行了循环周期实验,探索了产品气氧浓度随循环周期时间的变化规律。研究结果表明:当采用高空循环周期为6 s,低空循环周期为9 s,高低空分段高度为3.5 km等控制参数时,系统控制设计可适用于三床型机载制氧系统,并满足三床型机载制氧系统控制设计的需求。

     

  • 图 1  系统控制原理示意图

    Figure 1.  Schematic of system control principle

    图 2  系统控制逻辑图

    Figure 2.  System control logic diagram

    图 3  氧浓度允许范围随座舱高度的变化

    Figure 3.  Variation of allowable oxygen concentration range with cabin height

    图 4  机载制氧系统的实验装置原理图

    Figure 4.  Schematic of experimental equipment for onboard oxygen generation system

    图 5  输入压力为0.2 MPa、输出流量为30 L/min条件下产品气输出压力与飞行高度的关系

    Figure 5.  Relationship between product gas output pressure and flight height under condition of input pressure of 0.2 MPa and output flow of 30 L/min

    图 6  不同温度条件下产品气氧浓度与循环周期的关系

    Figure 6.  Relationship between product oxygen concentration and cycle period under different temperature conditions

    图 7  高度为0 km条件下产品气氧浓度与环境温度的关系

    Figure 7.  Relationship between product gas oxygen concentration and ambient temperature at height of 0 km

    图 8  不同输出流量条件下产品气氧浓度与座舱高度的关系

    Figure 8.  Relationship between product gas oxygen concentration and cabin height under different output flow conditions

    图 9  高度信号调节循环周期条件下产品气氧浓度与座舱高度的关系

    Figure 9.  Relationship between product gas oxygen concentration and cabin height under high signal regulation cycle period

    表  1  主要实验仪器

    Table  1.   Main experimental instruments

    仪器名称量程精度等级备注
    测氧仪0~100%±2%
    压力表10~1 MPa1.6级
    压力表20~1 MPa0.6级
    浮子流量计0~100 L/min2.5级
    高度表0~20 km
    直流稳压电源0~32 V/0~10 A
    高度监控仪0~20 km
    高温箱室温~80℃±2℃
    低温箱-60~0℃±2℃
    真空泵101.3 kPa~1.3 Pa
    空压机0.975 MPa
    高空舱0~20 km
    下载: 导出CSV
  • [1] REGE S U, YANG R T.Limits for air separation by adsorption with LiX zeolite[J].Industrial & Engineering Chemistry Research, 1997, 36(12):5358-5365. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025588666
    [2] 戴先知, 刘应书.变压吸附过程数学模型及其应用[J].低温与特气, 2006, 24(1):36-42. doi: 10.3969/j.issn.1007-7804.2006.01.010

    DAI X Z, LIU Y S.Mathematical model and application of PSA process[J].Low Temperature and Special Gas, 2006, 24(1):36-42(in Chinese). doi: 10.3969/j.issn.1007-7804.2006.01.010
    [3] 刘峰.航空个体防护技术与装备[M].北京:科学出版社, 2008.

    LIU F.Aviation personal protection technology and equipment[M].Beijing:Science Press, 2008(in Chinese).
    [4] 肖华军.航空供氧装备应用生理学[M].北京:军事医学科学出版社, 2015.

    XIAO H J.Applied physiology of aviation oxygen supply equipment[M].Beijing:Military Medical Science Press, 2015(in Chinese).
    [5] 顾飞龙. 碳分子筛变压吸附(PSA)法制取高纯度氮气的工艺研究[D]. 上海: 华东理工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10251-1011051193.htm

    GU F L. Study on manufacturing high-purity nitrogen by carbon molecular sieve pressure swing adsorption process[D]. Shanghai: East China University of Science and Technology, 2010(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10251-1011051193.htm
    [6] 王刚.碳分子筛制氮机新型高效吸附塔充填技术[J].煤矿安全, 2014, 45(7):56-58. http://d.old.wanfangdata.com.cn/Periodical/mkaq201407016

    WANG G.New and high efficient adsorption tower filling technique for carbon molecular sieve nitrogen machine[J].Laboratory of Coal Safety Technology, 2014, 45(7):56-58(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/mkaq201407016
    [7] 耿正波. 医用分子筛吸附制氧机的设计与开发[D]. 成都: 成都理工大学, 2010. http://industry.wanfangdata.com.cn/dl/Detail/Thesis?id=Thesis_D123801

    GENG Z B. The design and development of medical molecularsieve adsorption oxygen plant[D]. Chengdu: Chengdu University of Technology, 2010(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Thesis?id=Thesis_D123801
    [8] 龙春霞.制纯氧分子筛[J].广州化工, 2010, 38(11):67-69. doi: 10.3969/j.issn.1001-9677.2010.11.024

    LONG C X.Zeolite for producing high-purity oxygen[J].Guang-zhou Chemical Industry, 2010, 38(11):67-69(in Chinese). doi: 10.3969/j.issn.1001-9677.2010.11.024
    [9] TEAGUE K G, EDGAR T F.Predictive dynamic model of a small pressure swing adsorption air separation unit[J].Industrial & Engineering Chemistry Research, 1999, 38(10):3761-3775. doi: 10.1021/ie990181h
    [10] 杨锋, 林贵平, 赵竞全.分子筛浓缩器非等温吸附模型[J].北京航空航天大学学报, 2002, 28(1):8-11. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb200201003

    YANG F, LIN G P, ZHAO J Q.Nonisothermal adsorption model for molecular sieve oxygen concentrator(MSOC)[J].Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1):8-11(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb200201003
    [11] WU Y, LIN G P.Modeling and numerical simulation of onboard molecular sieve oxygen generation system[J].Transactions of Nanjing University of Aeronautics and Astronautics, 2004, 21(1):47-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njhkhtdxxb-e200401009
    [12] 王慧丹. 机载分子筛制氧系统的实验与仿真研究[D]. 北京: 北京航空航天大学, 2011.

    WANG H D. Experimental and simulation study of onboard molecular sieve oxygen generation system[D]. Beijing: Beihang University, 2011(in Chinese).
    [13] 肖华军.英国机载三层同心圆型分子筛制氧系统[J].国际航空, 1994(1):60-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400098071

    XIAO H J.British onboard three layers concentric circular molecular sieve oxygen generation system[J].National Defense Aviation, 1994(1):60-61(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400098071
    [14] LOVETT N P J, ASHDOWN R. Development of the OBOGS and BRAG valve for the F-22 life support system[R]. Phoenix: SAFE Association, 1998: 62-71.
    [15] SANTOS J C G F. Study of new adsorbents and operation cycles for medical PSA units[D]. Oporto City: Universidade do Porto, 2005. https://www.researchgate.net/publication/37655990_Study_of_new_adsorbents_and_operation_cycles_for_medical_PSA_units
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  516
  • HTML全文浏览量:  40
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-04
  • 录用日期:  2018-01-08
  • 网络出版日期:  2018-08-20

目录

    /

    返回文章
    返回
    常见问答