留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FTN传输条件下极化码帧间物理层安全结构设计

张晨宇 刘荣科

张晨宇, 刘荣科. FTN传输条件下极化码帧间物理层安全结构设计[J]. 北京航空航天大学学报, 2018, 44(10): 2217-2223. doi: 10.13700/j.bh.1001-5965.2018.0007
引用本文: 张晨宇, 刘荣科. FTN传输条件下极化码帧间物理层安全结构设计[J]. 北京航空航天大学学报, 2018, 44(10): 2217-2223. doi: 10.13700/j.bh.1001-5965.2018.0007
ZHANG Chenyu, LIU Rongke. Inter-block physical layer security structure design for polar code under FTN transmission[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2217-2223. doi: 10.13700/j.bh.1001-5965.2018.0007(in Chinese)
Citation: ZHANG Chenyu, LIU Rongke. Inter-block physical layer security structure design for polar code under FTN transmission[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2217-2223. doi: 10.13700/j.bh.1001-5965.2018.0007(in Chinese)

FTN传输条件下极化码帧间物理层安全结构设计

doi: 10.13700/j.bh.1001-5965.2018.0007
基金项目: 

国家自然科学基金 91438116

详细信息
    作者简介:

    张晨宇  男, 硕士研究生。主要研究方向:极化码物理层安全、超奈奎斯特传输技术、空天信息网络

    刘荣科  男, 教授, 博士生导师。主要研究方向:空天信息网络、多媒体通信与计算、专用集成电路设计

    通讯作者:

    刘荣科, E-mail:rongke_liu@buaa.edu.cn

  • 中图分类号: TN918

Inter-block physical layer security structure design for polar code under FTN transmission

Funds: 

National Natural Science Foundation of China 91438116

More Information
  • 摘要:

    极化码是适用于物理层wiretap信道安全模型的一种编码方式,针对在超奈奎斯特(FTN)条件下传输的极化码,设计了一种无需获知窃听信道信噪比(SNR)的帧间链式加密的安全结构。通过混淆结构将对合法接收端可靠而对非法窃听端阻塞的码元进行扩散,利用物理层主信道和窃听信道的差异,在每一帧中生成主信道可译而窃听信道不可译的密钥序列,对下一帧进行加密,实现安全容量的帧间传输。仿真结果显示,在FTN加速场景和窃听信道SNR相对于主信道波动的前提下,提出的极化码帧间安全结构可在wiretap信道的平均信道退化程度为0 dB时实现信息的安全传输。

     

  • 图 1  基于极化码和FTN传输的帧间物理层安全系统

    Figure 1.  Inter-block physical layer security system based on polar code and FTN

    图 2  码元分集示例

    Figure 2.  An example of bit classification for polar code

    图 3  混淆加密结构

    Figure 3.  Structure of scrambling-encryption module

    图 4  混淆加密器的雪崩效应

    Figure 4.  Avalanche phenomenon of scrambling encryption module

    图 5  解混淆解密结构

    Figure 5.  Structure of inverse scrambling-decryption module

    图 6  FTN-polar-wiretap系统在不同加速系数和滚降系数条件下主信道误帧率

    Figure 6.  Frame error rate of main channel for FTN-polar-wiretap system under different acceleration coefficients and roll-off factors

    图 7  不同窃听信道平均退化程度下的误码率

    Figure 7.  Bit error rate of wiretap channel under different average degree of degeneration

    图 8  不同窃听信道信噪比方差条件下的误码率

    Figure 8.  Bit error rate of wiretap channel under different SNR variance

    图 9  不同升根余弦滚降系数和加速系数下窃听信道误码率

    Figure 9.  Bit error rate of wiretap channel under different root raised cosine roll-off factors and acceleration coefficients

    表  1  误帧率和秘密信息传输码率对比

    Table  1.   Comparison of frame error rate and transmission code rate for secret message

    窃听信道信噪比/dB 主信道误帧率/10-4 窃听信道误帧率
    4 1.6217 0.040 0.097 0.5303
    3.5 1.6217 0.264 0.142 0.5303
    3 1.6217 0.767 0.185 0.5303
    2.5 1.6217 0.991 0.229 0.5303
    2 1.6217 1 0.271 0.5303
    下载: 导出CSV
  • [1] WYNER D.The wiretap channel[J]. Bell System Technical Journal, 1975, 54(8):1355-1387. doi: 10.1002/bltj.1975.54.issue-8
    [2] ARIKAN E.Channel polarization: A method for constructing capacity-achieving codes for symmetry binary-input memoryless channels[C]//2008 IEEE International Symposium on Information Theory.Piscataway, NJ: IEEE Press, 2008: 1173-1177.
    [3] MAHDAVIFAR H, VARDY A.Achieving the secrecy capacity of wiretap channels using polar codes[C]//2010 IEEE International Symposium on Information Theory.Piscataway, NJ: IEEE Press, 2010: 913-917.
    [4] MAHDAVIFAR H, VARDY A.Achieving the secrecy capacity of wiretap channels using polar codes[J]. IEEE Transactions on Information Theory, 2011, 57(10):6428-6443. doi: 10.1109/TIT.2011.2162275
    [5] SASOGLU E, VARDY A.A new polar coding scheme for strong security on wiretap channels[C]//2013 IEEE International Symposium on Information Theory.Piscataway, NJ: IEEE Press, 2013: 1117-1121.
    [6] WEI Y P, ULUKUS S.Polar coding for the general wiretap channel with extensions to multiuser scenarios[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(2):278-291. doi: 10.1109/JSAC.2015.2504275
    [7] SI H, KOYLUOLU O O, VISHWANATH S.Achieving secrecy without any instantaneous CSI: Polar coding for fading wiretap channels[C]//2015 IEEE International Symposium on information Theory.Piscataway, NJ: IEEE Press, 2015: 2161-2165.
    [8] YOUNGSIK K, JONGHWAN K, SANGHYO K.A secure information transmission scheme with a secret key based on polar coding[J]. IEEE Communications Letters, 2014, 18(6):937-940. doi: 10.1109/LCOMM.2014.2318306
    [9] ZHAO Y Z, ZOU X C, LU Z J, et al.Chaotic encrypted polar coding scheme for general wiretap channel[J]. IEEE Transactions on Very Large Scale Integration Systems, 2017, 25(12):3331-3340. doi: 10.1109/TVLSI.2016.2636908
    [10] MOSTAFA S, RONGKE L, CHENYU Z.A novel scrambler design for enhancing secrecy transmission based on polar code[J]. IEEE Communications Letters, 2017, 21(8):1679-1682. doi: 10.1109/LCOMM.2017.2697427
    [11] MAZO J E.Faster-than-Nyquist signaling[J]. Bell System Technical Journal, 1975, 54(8):1451-1462. doi: 10.1002/bltj.1975.54.issue-8
    [12] ANDERSON J B, RUSEK F, OWALL V.Faster-than-Nyquist signaling[J]. Proceedings of IEEE, 2013, 101(8):1817-1830. doi: 10.1109/JPROC.2012.2233451
    [13] JOAN D.Computational aspects of the expected differential probability of 4-round AES and AES-like ciphers[J]. Computing, 2009, 85(1):85-104.
    [14] JOAN D.New criteria for linear maps in AES like ciphers[J]. Cryptography and Communications, 2009, 1(1):47-69. doi: 10.1007/s12095-008-0003-x
    [15] ELUMALAI R.Improving diffusion power of AES Rijindael with 8×8 MDS matrix[J]. International Journal on Computer Science and Engineering, 2011, 3(1):246-253.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  39
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-08
  • 录用日期:  2018-04-08
  • 网络出版日期:  2018-10-20

目录

    /

    返回文章
    返回
    常见问答