留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GBAS基准站布设方案设计与评估方法

张悦 王志鹏 李强

张悦, 王志鹏, 李强等 . GBAS基准站布设方案设计与评估方法[J]. 北京航空航天大学学报, 2018, 44(12): 2545-2555. doi: 10.13700/j.bh.1001-5965.2018.0080
引用本文: 张悦, 王志鹏, 李强等 . GBAS基准站布设方案设计与评估方法[J]. 北京航空航天大学学报, 2018, 44(12): 2545-2555. doi: 10.13700/j.bh.1001-5965.2018.0080
ZHANG Yue, WANG Zhipeng, LI Qianget al. A design and evaluation strategy for GBAS reference station layout scheme[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2545-2555. doi: 10.13700/j.bh.1001-5965.2018.0080(in Chinese)
Citation: ZHANG Yue, WANG Zhipeng, LI Qianget al. A design and evaluation strategy for GBAS reference station layout scheme[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2545-2555. doi: 10.13700/j.bh.1001-5965.2018.0080(in Chinese)

GBAS基准站布设方案设计与评估方法

doi: 10.13700/j.bh.1001-5965.2018.0080
基金项目: 

国家自然科学基金 61501010

国家自然科学基金 U1433114

国家自然科学基金 61501014

国家自然科学基金 61521091

航空科学基金 2015ZC51035

详细信息
    作者简介:

    张悦  女, 硕士研究生。主要研究方向:地基增强系统

    王志鹏  男, 博士, 讲师, 硕士生导师。主要研究方向:卫星导航民航/军航/通航应用的完好性监测技术

    李强  男, 博士研究生, 高级工程师。主要研究方向:地基增强系统

    通讯作者:

    王志鹏,E-mail: wangzhipeng@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

A design and evaluation strategy for GBAS reference station layout scheme

Funds: 

National Natural Science Foundation of China 61501010

National Natural Science Foundation of China U1433114

National Natural Science Foundation of China 61501014

National Natural Science Foundation of China 61521091

Aeronautical Science Foundation of China 2015ZC51035

More Information
  • 摘要:

    地基增强系统(GBAS)基准站的布设方式会直接影响系统精度与完好性,且与机场环境、卫星星座以及当地电离层活动情况密切相关。然而,美国联邦航空管理局(FAA)发布的GBAS选址标准只是给出了基准站布设的基本要求,没有深入考虑上述因素的影响。因此,GBAS基准站布设方案设计与评估方法需要进一步研究。首先,基于采集数据比较分析了5个机场典型GBAS基准站布设和伪距校正误差标准差。然后,结合理论和仿真研究了基准站个数对GBAS性能的影响,以及基线长度对星历故障监视和异常电离层梯度监视性能的影响。最后,提出一种GBAS基准站布设方案设计和评估方法,并辅以Ⅴ型跑道的4个方案示例,为根据机场实际情况、GBAS星历故障监视和异常电离层梯度监视实际需求等设计和选择合适的方案提供参考。

     

  • 图 1  5个机场地形情况及基准站布设

    Figure 1.  Terrain and reference station layouts of five airports

    图 2  5个机场播发的σpr_gnd

    Figure 2.  Broadcast σpr_gnd of five airports

    图 3  不同基准站数目下的VPL

    Figure 3.  VPL for different numbers of reference stations

    图 4  GIG B值异常与正常时间下σpr_gnd比较

    Figure 4.  Comparison of σpr_gnd values of GIG B-valuebetween fault-occurrence time and normal time

    图 5  2个基准天线与卫星的几何关系

    Figure 5.  Geometric relationship between two reference antennas and a satellite

    图 6  星历故障条件下天线与卫星的几何关系

    Figure 6.  Geometric relationship between antenna and satellite under an ephemeris fault

    图 7  MDEE与基线长度和卫星仰角的关系

    Figure 7.  MDEE as a function of baseline length and satellite elevation

    图 8  有效基线与跑道方向的关系

    Figure 8.  Relationship between effective baseline and runway direction

    图 9  可检测电离层梯度范围与基线长度关系

    Figure 9.  Relationship between detectable ionospheric slant gradient range and baseline length

    图 10  GBAS基准站布设方案示例A和B

    Figure 10.  Sample GBAS reference station layout schemes A and B

    图 11  机场限制下GBAS基准站布设方案示例C和D

    Figure 11.  Sample GBAS reference station layout schemes C and D under limited airport conditions

    图 12  4种方案可监测电离层梯度范围

    Figure 12.  Detectable ionospheric slant gradient ranges of four schemes

    表  1  不同基准站数目下KffmdKmd取值

    Table  1.   Values of Kffmd and Kmd for different numbers of reference stations

    乘积因子 基准站数目
    2 3 4 5 6
    Kffmd 5.762 5.810 5.847 5.877 5.903
    Kmd 2.935 2.898 2.878 2.865 2.856
    下载: 导出CSV

    表  2  VPL随基准站数目增大而减小的百分比统计

    Table  2.   Decreasing VPL percentage as number of reference stations increases

    M VPL减小百分比
    GAST C GAST D
    2 →3 42.66 16.88
    3 →4 8.70 1.51
    4 →5 2.66 0.83
    5 →6 1.78 0.49
    下载: 导出CSV

    表  3  4种方案6条基线有效长度以及MDEE

    Table  3.   Effective lengths and ephemeris monitor MDEE of six baselines in four schemes

    m
    方案 参数 l12 l13 l14 l23 l24 l34
    A 有效长度 256 400 164.55 144 91.45 235.45
    MDEE 1754 1123 2730 3120 4915 1907
    B 有效长度 400 544 257.12 144 142.88 286.88
    MDEE 1123 826 1747 3120 3144 1566
    C 有效长度 122 200 78.42 78 43.58 121.58
    MDEE 3683 2247 5750 5782 10404 3697
    D 有效长度 200 322 128.56 122 71.44 193.44
    MDEE 2247 1395 3499 3683 6290 2322
    下载: 导出CSV

    表  4  星历MDEE、电离层梯度监视范围统计结果

    Table  4.   Statistics of ephemeris monitor MDEE and detectable ionospheric slant gradient ranges

    方案 MDEE 电离层梯度监视
    极大值/m 极小值/m 均值/
    m
    MDEE < 3000m占比/% 范围/(mm·km-1) 范围在[0, 2000]mm/
    km占比/%
    A 4 915 1123 2592 66.67 [114.2, 2000] 94.29
    B 3144 826 1921 66.67 [83.93, 1311]∪[1484, 2000] 87.15
    C 10404 2247 5261 16.7 [228.3, 2000] 88.59
    D 6290 1395 3239 50 [141.8, 2000] 92.91
    下载: 导出CSV
  • [1] International GBAS Working Group (IGWG).GBAS approach & landing systems, the future of precision approach[EB/OL].(2017-04-20)[2018-01-10]. http://flygls.net/.
    [2] ICAO NSP.Report of the meeting of the GBAS WG (GWG): NSP3 Agenda 1[R].Montreal: ICAO, 2016.
    [3] GRATTON L R.Orbit ephemeris monitors for category Ⅰ local area augmentation of GPS[D].Chicago: Illinois Institute of Technology, 2003.
    [4] ICAO NSP/4-WP/18.Proposed change to ICAO DOC 9157 Part 6 to facilitate GBAS ground subsystem siting: NSP4 Agenda 3[R].Montreal: ICAO, 2017.
    [5] FAA.Siting criteria for ground based augmentation system (GBAS): 6884.1[S].Washington, D.C.: FAA, 2010.
    [6] SESAR.Ground architecture and airport installation: D0403.00.00[R].Ragusa: SESAR, 2013.
    [7] FAA.Ground based augmentation system performance analysis and activities report: Quarter 1-2016[R].Washington, D.C.: FAA, 2016.
    [8] DAUTERMANN T, FELUX M, GROSCH A.Approach service type D evaluation of the DLR GBAS testbed[J].GPS Solutions, 2012, 16(3):375-387. doi: 10.1007/s10291-011-0239-3
    [9] RTCA.Minimum operational performance standards for GPS local area augmentation system airborne equipment: DO-253C[S].Washington, D.C.: RTCA, 2008.
    [10] RTCA.Minimum aviation system performance standards for the local area augmentation system(LAAS): DO-245A[S].Washington, D.C.: RTCA, 2004.
    [11] WANG Z, MACABIAU C, ZHANG J, et al.Prediction and analysis of GBAS integrity monitoring availability at LinZhi airport[J].GPS Solutions, 2014, 18(1):27-40. doi: 10.1007/s10291-012-0306-4
    [12] RTCA.GNSS-based precision approach local area augmentation system (LAAS) signal-in-space interface control document (ICD): DO-246D[S].Washington, D.C.: RTCA, 2008.
    [13] PERVAN B, GRATTON L.Orbit ephemeris monitors for local area differential GPS[J].IEEE Transactions on Aerospace & Electronic Systems, 2005, 41(2):449-460. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b7a631111c27760142f258433edbd792
    [14] ICAO NSP.Preliminary review of proposed amendments to Annex 10, Volume Ⅰ: Item No.20403[R].Montreal: ICAO, 2017.
    [15] AHN J, LEE Y J, WON D H, et al.Orbit ephemeris failure detection in a GNSS regional application[J].International Journal of Aeronautical & Space Sciences, 2015, 16(1):89-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JAKO201515338946366
    [16] KHANAFSEH S, PULLEN S, WARBURTON J.Carrier phase ionospheric gradient ground monitor for GBAS with experimental validation[J].Navigation, 2012, 59(1):51-60. doi: 10.1002/navi.v59.1
    [17] SHIVELY C A.Preliminary analysis of requirements for CAT ⅢB LAAS[C]//Proceedings of Annual Meeting of the Institute of Navigation.Albuquerque, NM: ION, 2001: 705-714.
    [18] PULLEN S, PARK Y S, ENGE P.Impact and mitigation of ionospheric anomalies on ground-based augmentation of GNSS[J].Radio Science, 2016, 44(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=662a93eb99923d1ef239fd5e35e37935
    [19] LUO M, PULLEN S, WALTER T, et al.Ionosphere spatial gradient threat for LAAS: Mitigation and tolerable threat space[C]//Proceedings of the National Technical Meeting of the Institute of Navigation.San Diego, CA: ION, 2004: 490-501.
    [20] ICAO NSP.GAST D siting issues paper: WP/34 Agenda 1[R].Montreal: ICAO, 2010.
    [21] HARRIS M, MURPHY T, SAITO S.Further validation of GAST D ionospheric anomaly mitigations[C]//Proceedings of the International Technical Meeting of the Institute of Navigation.Manassas, VA: ION, 2011, 8034(6): 942-949.
    [22] DATTA-BARUA S, LEE J, PULLEN S, et al.Ionospheric threat parameterization for local area GPS-based aircraft landing systems[J].Journal of Aircraft, 2010, 47(7):1141-1151. doi: 10.2514/1.46719
    [23] KIM M, CHOI Y, JUN H S, et al.GBAS ionospheric threat model assessment for category Ⅰ operation in the Korean region[J].GPS Solutions, 2015, 19(3):443-456. doi: 10.1007/s10291-014-0404-6
    [24] ICAO NSP/3.GBAS MC/DF verification exercises preliminary results: IP/14 Agenda 3[R].Montreal: ICAO, 2016.
    [25] ICAO NSP/3.Assessment of GNSS repeater impact on GBAS: WP/17 Agenda 3[R].Montreal: ICAO, 2016.
    [26] BELABBAS B, REMI P, MEURER M, et al.Absolute slant ionosphere gradient monitor for GAST-D: Issues and opportunities[C]//Proceedings of the International Technical Meeting of The Satellite Division of the Institute of Navigation.Manassas, VA: ION, 2011: 2993-3002.
    [27] WANG Z, WANG S, ZHU Y, et al.Assessment of ionospheric gradient impacts on ground-based augmentation system (GBAS) data in Guangdong province, China[J].Sensors, 2017, 17(10):2313. doi: 10.3390/s17102313
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  633
  • HTML全文浏览量:  169
  • PDF下载量:  407
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-08
  • 录用日期:  2018-08-23
  • 网络出版日期:  2018-12-20

目录

    /

    返回文章
    返回
    常见问答