留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞行器平稳滑翔弹道扰动运动伴随分析

赫泰龙 陈万春 刘芳

赫泰龙, 陈万春, 刘芳等 . 高超声速飞行器平稳滑翔弹道扰动运动伴随分析[J]. 北京航空航天大学学报, 2019, 45(1): 109-122. doi: 10.13700/j.bh.1001-5965.2017.0545
引用本文: 赫泰龙, 陈万春, 刘芳等 . 高超声速飞行器平稳滑翔弹道扰动运动伴随分析[J]. 北京航空航天大学学报, 2019, 45(1): 109-122. doi: 10.13700/j.bh.1001-5965.2017.0545
HE Tailong, CHEN Wanchun, LIU Fanget al. Adjoint analysis of steady glide trajectory with disturbance motion for hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 109-122. doi: 10.13700/j.bh.1001-5965.2017.0545(in Chinese)
Citation: HE Tailong, CHEN Wanchun, LIU Fanget al. Adjoint analysis of steady glide trajectory with disturbance motion for hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 109-122. doi: 10.13700/j.bh.1001-5965.2017.0545(in Chinese)

高超声速飞行器平稳滑翔弹道扰动运动伴随分析

doi: 10.13700/j.bh.1001-5965.2017.0545
详细信息
    作者简介:

    赫泰龙  男, 博士研究生。主要研究方向:飞行力学、弹道优化、拦截仿真

    陈万春  男, 博士, 教授, 博士生导师。主要研究方向:飞行力学、导弹制导与控制

    刘芳  女, 博士。主要研究方向:飞行力学、拦截仿真

    通讯作者:

    陈万春, E-mail: wanchun_chen@buaa.edu.cn

  • 中图分类号: V412.4+4;TJ765.1

Adjoint analysis of steady glide trajectory with disturbance motion for hypersonic vehicle

More Information
  • 摘要:

    针对高超声速飞行器平稳滑翔弹道扰动运动问题,研究了伴随仿真方法及其应用。首先,利用伴随系统的数学定义式,从新的角度给出了伴随仿真方法的统一解释,包括误差预算性质和伴随一次仿真结果一般意义;对于随机线性系统,导出协方差分析的伴随。然后,在滑翔动力学建模和平稳滑翔弹道定义基础上,得到了平稳滑翔弹道定义的一致性;建立初始状态和气动力存在干扰的动力学模型,并在小扰动假设下得到标准平稳滑翔弹道附近的线性化微分方程。最后,通过伴随仿真算例,分析了确定性常值小扰动和随机扰动对平稳滑翔弹道的终端状态的影响,同时对比非线性仿真和蒙特卡罗仿真,结果吻合;伴随仿真方法的计算效率优势明显。

     

  • 图 1  变量符号及受力分析示意图

    Figure 1.  Schematic of variable symbol and force analysis

    图 2  不同初始速度下的平稳滑翔弹道对比

    Figure 2.  Comparison of steady glide trajectories with different initial velocities

    图 3  平稳滑翔弹道小扰动偏差

    Figure 3.  Trajectory deviation from steady glide in case of small disturbance

    图 4  伴随一次仿真输出各扰动带来的终端高度偏差

    Figure 4.  One adjoint simulation yields terminal height deviation for each disturbance

    图 5  各扰动因素对终端高度偏差的影响(非线性仿真和伴随仿真)

    Figure 5.  Influence of each disturbance on terminal height deviation(nonlinear and adjoint simulation)

    图 6  伴随一次仿真输出各扰动带来的终端速度偏差和终端射程偏差

    Figure 6.  One adjoint simulation yields terminal range deviation and terminal velocity deviation for each disturbance

    图 7  各随机扰动输入下终端高度标准差、终端速度标准差、终端射程标准差伴随仿真结果

    Figure 7.  Adjoint simulation results of standard deviation of terminal height, velocity and range for each random disturbance

    图 8  合随机扰动下终端高度标准差和终端射程标准差

    Figure 8.  Total standard deviation of terminal height and range with all random disturbances

    图 9  各随机扰动单独作用时终端速度标准差(非线性蒙特卡罗仿真和伴随仿真对比)

    Figure 9.  Standard deviation of terminal velocity for each random disturbance (comparison between nonlinear Monte Carlo simulations and adjoint simulation)

    表  1  不同时间常数tc的优化结果

    Table  1.   Optimization results with different time constants tc

    tc/s h0/m γ0/(°)
    500 61032.14 0.052308
    1000 61032.02 0.052312
    1500 61032.00 0.052312
    2000 61032.10 0.052309
    下载: 导出CSV

    表  2  单位各扰动导致的终端高度偏差

    Table  2.   Terminal height deviation with respect to each disturbance

    tgo/s
    500 133.1 -405.5 8.8 184.6 -121.8
    1000 -104.9 623.9 11.8 322.6 -242.3
    1500 -21.3 65.6 14.5 440.5 -365.8
    2000 9.9 318.6 19.2 561.3 -488.4
    2500 -3.8 1109.2 26.5 685.2 -610.8
    3000 91.2 1286.2 36.5 801.8 -733.7
    下载: 导出CSV

    表  3  单位各扰动导致的终端速度偏差

    Table  3.   Terminal velocity deviation with respect to each disturbance

    tgo/s
    500 -1.0 20.2 1.1 14.1 -14.0
    1000 5.7 33.9 1.3 27.9 -28.2
    1500 2.5 53.7 1.7 42.3 -42.4
    2000 3.3 78.4 2.2 56.5 -56.6
    2500 5.7 115.4 3.0 70.6 -70.8
    3000 6.5 165.9 4.3 84.8 -85.0
    下载: 导出CSV

    表  4  单位各扰动导致的终端射程偏差

    Table  4.   Terminal range deviation with respect to each disturbance

    tgo/s
    500 2.1 9.1 0.5 3.3 -3.4
    1000 3.3 28.1 1.2 13.0 -13.3
    1500 4.6 60.9 2.0 28.1 -28.5
    2000 6.4 111.8 3.3 47.5 -47.9
    2500 9.1 188.7 5.1 69.9 -70.5
    3000 13.0 303.8 7.7 94.6 -95.3
    下载: 导出CSV
  • [1] SÄNGER E, BREDT J.A rocket drive for long range bombers: Translation No.CGD-32[R]. Technical Information Branch, Navy Dept., 1944.
    [2] HARPOLD J C, GRAVES C A.Shuttle entry guidance[J]. The Journal of the Astronautical Science, 1979, 37(3):239-268. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024582690/
    [3] 胡锦川, 陈万春.高超声速飞行器平稳滑翔弹道设计方法[J].北航空航天大学学报, 2015, 41(8):1464-1475. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201508015

    HU J C, CHEN W C.Steady glide trajectory planning method for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8):1464-1475(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201508015
    [4] 胡锦川, 张晶, 陈万春.高超声速飞行器平稳滑翔弹道解析解及其应用[J].北京航空航天大学学报, 2016, 42(5):961-968. http://bhxb.buaa.edu.cn/CN/abstract/abstract13694.shtml

    HU J C, ZHANG J, CHEN W C.Analytical solutions of steady glide trajectory for hypersonic vehicle and planning application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):961-968(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13694.shtml
    [5] LANING J H, BATTIN R H.Random processes in automatic control[M]. New York:McGraw-Hill, 1956:225-253.
    [6] ZARCHAN P.Tactical and strategic missile guidance[M]. 6th ed.Reston: AIAA, 2012: 35-105.
    [7] ZADEH L A, DESOER C A.Linear system theory:The state space approach[M]. New York:McGraw-Hill, 1963:337-367.
    [8] WEISS M.Adjoint method for missile performance analysis on state-space models[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(2):236-248. doi: 10.2514/1.7342
    [9] HE T L, CHEN W C.A new interpretation of adjoint method in linear time-varying system analysis[C]//IEEE International Conference on CIS and RAM. Piscataway, NJ: IEEE Press, 2017: 58-63.
    [10] ZARCHAN P.Complete statistical analysis of nonlinear missile guidance systems-SLAM[J]. Journal of Guidance, Control, and Dynamics, 1979, 2(1):71-78. doi: 10.2514/3.55834
    [11] WEISS M, BUCCO D.Handover analysis for tactical guided weapons using the adjoint method: AIAA-2005-6157[R]. Reston: AIAA, 2005.
    [12] BUCCO D, WEISS M.Adjoint analysis of guidance systems with nonstandard inputs[J]. Journal of Guidance Control & Dynamics, 2015, 38(9):1800-1809. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a5acac7658069424e6deb169296573c
    [13] BUCCO D.Aerospace applications of adjoint theory: ADA526349[R]. Edinburgh: Defence Science and Technology Group, 2010.
    [14] SARACHIK P, KREINDLER E.Concerning adjoints of discrete-time systems[J]. IEEE Transactions on Automatic Control, 1965, 10(3):350-352. doi: 10.1109/TAC.1965.1098139
    [15] BROGAN W.Performance analysis of continuous, sampled, and multirate-sampled systems with random inputs[J]. IEEE Transactions on Automatic Control, 1967, 12(5):599-601. doi: 10.1109/TAC.1967.1098690
    [16] WEISS M, BUCCO D.Adjoint method for hybrid guidance loop state-space models[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(4):614-622. doi: 10.2514/1.62954
    [17] 林晓辉, 崔乃刚, 刘暾.伴随理论及其在仿真中应用的研究[J].航天控制, 1996(3):61-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600914687

    LIN X H, CUI N G, LIU T.Research on adjoint system theory and its application in simulation technology[J]. Aerospace Control, 1996(3):61-65(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600914687
    [18] 邹晖, 陈万春, 邢晓岚.导弹制导精度MATRIXx伴随分析系统[J].飞行力学, 2001, 19(4):73-77. doi: 10.3969/j.issn.1002-0853.2001.04.018

    ZOU H, CHEN W C, XING X L.MATRIXx adjoint system for miss distance analysis[J]. Flight Dynamics, 2001, 19(4):73-77(in Chinese). doi: 10.3969/j.issn.1002-0853.2001.04.018
    [19] TSIEN H S.Engineering cybernetics[M]. New York:McGraw-Hill, 1954:178-197.
    [20] 陈克俊, 刘鲁华, 孟云鹤.远程火箭飞行动力学与制导[M].北京:国防工业出版社, 2014:262-263.

    CHEN K J, LIU L H, MENG Y H.Launch vehicle flight dynamics and guidance[M]. Beijing:National Defence Industry Press, 2014:262-263(in Chinese).
    [21] GREEN M, LIMEBEER D J N.Linear robust control[M]. Upper Saddle River:Prentice-Hall, 1995:85-86.
    [22] PHILLIPS T H.A common aero vehicle (CAV) model, description, and employment guide[R]. Arlington, VA: Schafer Corporation for AFRL and AFSPC, 2003.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  628
  • HTML全文浏览量:  85
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-31
  • 录用日期:  2018-03-30
  • 网络出版日期:  2019-01-20

目录

    /

    返回文章
    返回
    常见问答