留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多轴同步控制的微尺度双向加载实验系统

熊晶洲 万敏 孟宝 赵越超 吴向东

熊晶洲, 万敏, 孟宝, 等 . 基于多轴同步控制的微尺度双向加载实验系统[J]. 北京航空航天大学学报, 2019, 45(1): 174-182. doi: 10.13700/j.bh.1001-5965.2018.0219
引用本文: 熊晶洲, 万敏, 孟宝, 等 . 基于多轴同步控制的微尺度双向加载实验系统[J]. 北京航空航天大学学报, 2019, 45(1): 174-182. doi: 10.13700/j.bh.1001-5965.2018.0219
XIONG Jingzhou, WAN Min, MENG Bao, et al. Micro-scaled biaxial loading test system based on multi-axis synchronous control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 174-182. doi: 10.13700/j.bh.1001-5965.2018.0219(in Chinese)
Citation: XIONG Jingzhou, WAN Min, MENG Bao, et al. Micro-scaled biaxial loading test system based on multi-axis synchronous control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 174-182. doi: 10.13700/j.bh.1001-5965.2018.0219(in Chinese)

基于多轴同步控制的微尺度双向加载实验系统

doi: 10.13700/j.bh.1001-5965.2018.0219
基金项目: 

国家自然科学基金 51605018

详细信息
    作者简介:

    熊晶洲  男, 硕士研究生。主要研究方向:超薄板屈服行为

    万敏  男, 博士, 教授, 博士生导师。主要研究方向:精密成形与微结构制造技术

    孟宝  男, 博士, 副教授, 博士生导师。主要研究方向:航空薄壁微结构成形制造技术

    吴向东  男, 博士, 副教授。主要研究方向:金属薄板表征与实验技术

    通讯作者:

    孟宝, E-mail: mengbao@buaa.edu.cn

  • 中图分类号: TG381

Micro-scaled biaxial loading test system based on multi-axis synchronous control

Funds: 

National Natural Science Foundation of China 51605018

More Information
  • 摘要:

    针对目前微细成形中材料屈服、强化行为实验研究的不足,提出通过建立多轴同步控制的微尺度双向加载实验系统,实现超薄板在复杂加载路径下的性能表征测试。双向加载实验系统基于四轴独立驱动的硬件组成和上、下位机分布式控制策略,采用数字散斑测量(DIC)计算实验过程的应变。通过建立交流永磁同步电机(PMSM)控制模型,辨识了速度闭环控制参数。在非线性PID控制方法实现单轴位置闭环控制的基础上,基于虚拟主轴法实现了不同位移/载荷比例条件下的四轴同步运动。双向加载实验结果表明:同步控制精度满足位移小于等于0.02 mm、载荷小于等于0.05 kN的要求,可用于超薄板微尺度屈服和强化行为的实验研究。

     

  • 图 1  屈服轨迹的传统实验获取方法

    Figure 1.  Traditional test acquisition method of yield principle

    图 2  双向加载实验原理

    Figure 2.  Principle of biaxial loading test

    图 3  双向加载试验机硬件组成

    Figure 3.  Hardware structure of biaxial loading test machine

    图 4  微尺度双向加载实验系统控制原理

    Figure 4.  Control principle of micro-scaled biaxial loading test system

    图 5  控制软件结构

    Figure 5.  Structure of control software

    图 6  双向加载实验控制流程

    Figure 6.  Control process of biaxial loading test

    图 7  DIC与引伸计测量结果对比

    Figure 7.  Comparison between DIC and extensometer measurement results

    图 8  单轴闭环控制模型

    Figure 8.  Single-axis closed-loop control model

    图 9  速度闭环控制模型

    Figure 9.  Speed closed-loop control model

    图 10  速度闭环控制模型输出结果与实际速度对比

    Figure 10.  Comparison between speed closed-loop control model output results and actual speed

    图 11  PMSM转矩与外界载荷的非线性关系

    Figure 11.  Non-linear relationship between PMSM torque and external load

    图 12  位置闭环控制模型

    Figure 12.  Positional closed-loop control model

    图 13  传统PID、模糊PID与非线性PID控制结果

    Figure 13.  Traditional PID, fuzzy PID and nonlinear PID control results

    图 14  位移比例同步控制模型

    Figure 14.  Displacement proportional synchronous control model

    图 15  微尺度双向加载实验系统

    Figure 15.  Micro-scaled biaxial loading test system

    图 16  试样中心点轨迹

    Figure 16.  Center point locus of sample

    图 17  位移比例和载荷比例同步精度

    Figure 17.  Displacement and load ratio synchronization accuracy

    图 18  不同加载路径下屈服点拟合的屈服轨迹

    Figure 18.  Yield curves of yield point fitting under different loading paths

    表  1  双向加载实验系统技术指标

    Table  1.   Technical indicators of biaxial loading test system

    指标 位移分辨率/μm 力传感器准确度等级 位移同步精度/mm 载荷同步精度/kN
    数值 5 0.02~0.03 0.02 0.05
    下载: 导出CSV
  • [1] SCHROERS J, PHAM Q, DESAI A.Thermoplastic forming of bulk metallic glass-A technology for MEMS and microstructure fabrication[J].Journal of Microelectromechanical Systems, 2007, 16(2):240-247. doi: 10.1109/JMEMS.0007.892889
    [2] MENG B, FU M W, FU C M, et al.Ductile fracture and deformation behavior in progressive microforming[J].Materials & Design, 2015, 83:14-25. http://cn.bing.com/academic/profile?id=5fde5d3f208ccca700e3e273b5009a96&encoded=0&v=paper_preview&mkt=zh-cn
    [3] RAZALI A R, QIN Y.A review on micro-manufacturing, micro-forming and their key issues[J].Procedia Engineering, 2013, 53(7):665-672. http://cn.bing.com/academic/profile?id=8ba000890df14e07c46404499f4cb0e3&encoded=0&v=paper_preview&mkt=zh-cn
    [4] MANABE K, SHIMIZU K, KOYAMA T, et al.Validation of FE simulation based on surface roughness model in micro-deep drawing[J].Journal of Materials Processing Technology, 2008, 204(1-3):89-93. doi: 10.1016/j.jmatprotec.2007.10.081
    [5] YEH F H, LI C L, LU Y H.Study of thickness and grain size effects on material behavior in micro-forming[J].Journal of Materials Processing Technology, 2008, 201(1-3):237-241. doi: 10.1016/j.jmatprotec.2007.11.138
    [6] FU M W, WANG J L, KORSUNSKY A M.A review of geometrical and microstructural size effects in micro-scale deformation processing of metallic alloy components[J].International Journal of Machine Tools & Manufacture, 2016(109):94-125. http://cn.bing.com/academic/profile?id=1c3689bd1effe58ef72a8f6fe2728dae&encoded=0&v=paper_preview&mkt=zh-cn
    [7] MENG B, FU M W.Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening[J].Materials & Design, 2015, 83:400-412. http://cn.bing.com/academic/profile?id=7a2599a9e5f1476eddef29d798a329fb&encoded=0&v=paper_preview&mkt=zh-cn
    [8] FU M W, CHAN W L.A review on the state-of-the-art microforming technologies[J].International Journal of Advanced Manufacturing Technology, 2013, 67(9-12):2411-2437. doi: 10.1007/s00170-012-4661-7
    [9] DUBOS P A, FLEURIER G, HUG E.An experimental investigation of the size effects in forming processes of high-purity thin metallic sheets[C]//Materials Science Forum, 2017: 459-464.
    [10] PENG L F, XU Z T, FU M W, et al.Forming limit of sheet metals in meso-scale plastic forming by using different failure criteria[J].International Journal of Mechanical Sciences, 2017, 120:190-203. doi: 10.1016/j.ijmecsci.2016.11.021
    [11] HANNON A, TIERNAN P.A review of planar biaxial tensile test systems for sheet metal[J].Journal of Materials Processing Technology, 2008, 198(1):1-13. http://cn.bing.com/academic/profile?id=dc1608d47da9c1dd57052f233c3c3ac8&encoded=0&v=paper_preview&mkt=zh-cn
    [12] BANABIC D, BARLAT F, CAZACU O, et al.Advances in anisotropy and formability[J].International Journal of Material Forming, 2010, 3(3):165-189. doi: 10.1007/s12289-010-0992-9
    [13] CHEN H, YE D, CHE R.High speed deformation measurement using digital speckle correlation method[C]//27th International Congress on High-Speed Photography and Photonics.Bellingham: SPIE, 2007: 62791O.
    [14] 陈华.基于数字散斑相关方法的视觉变形测量技术研究[D].哈尔滨: 哈尔滨工业大学, 2008: 15-22. http://cdmd.cnki.com.cn/Article/CDMD-10213-2009224157.htm

    CHEN H.Study of vision deformation measurement technologies based on digital speckle correlation method[D].Harbin: Harbin Institute of Technology, 2008: 15-22(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-2009224157.htm
    [15] MA S P, JI G C.Digital speckle correlation method improved by genetic algorithm[J].Acta Mechanica Solida Sinica, 2003, 16(4):366-373. http://cn.bing.com/academic/profile?id=d02663ba4b65cd246fa1349d72132ac4&encoded=0&v=paper_preview&mkt=zh-cn
    [16] 汪海波, 周波, 方斯琛.永磁同步电机调速系统的滑模控制[J].电工技术学报, 2009, 24(9):71-77. doi: 10.3321/j.issn:1000-6753.2009.09.011

    WANG H B, ZHOU B, FANG S C.PMSM sliding mode control system based on exponential reaching law[J].Transactions of China Electrotechnical Society, 2009, 24(9):71-77(in Chinese). doi: 10.3321/j.issn:1000-6753.2009.09.011
    [17] 陈鹏展.交流伺服系统控制参数自整定策略研究[D].武汉: 华中科技大学, 2010: 19-27. http://cdmd.cnki.com.cn/Article/CDMD-10487-2010184585.htm

    CHEN P Z.Study on the self-tuning strategy of control parameters for AC servo system[D].Wuhan: Huazhong University of Science and Technology, 2010: 19-27(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10487-2010184585.htm
    [18] 王述彦, 师宇, 冯忠绪.基于模糊PID控制器的控制方法研究[J].机械科学与技术, 2011, 30(1):166-172. http://cdmd.cnki.com.cn/Article/CDMD-10422-2007088775.htm

    WANG S Y, SHI Y, FENG Z X.A method for controlling a loading system based on a fuzzy PID controller[J].Mechanical Science and Technology for Aerospace Engineering, 2011, 30(1):166-172(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10422-2007088775.htm
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  711
  • HTML全文浏览量:  130
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 录用日期:  2018-07-13
  • 网络出版日期:  2019-01-20

目录

    /

    返回文章
    返回
    常见问答