留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空气域与流体域耦合作用下双层电池包散热特性

赵磊 朱茂桃 徐晓明 胡东海 李仁政

赵磊, 朱茂桃, 徐晓明, 等 . 空气域与流体域耦合作用下双层电池包散热特性[J]. 北京航空航天大学学报, 2019, 45(1): 200-211. doi: 10.13700/j.bh.1001-5965.2018.0242
引用本文: 赵磊, 朱茂桃, 徐晓明, 等 . 空气域与流体域耦合作用下双层电池包散热特性[J]. 北京航空航天大学学报, 2019, 45(1): 200-211. doi: 10.13700/j.bh.1001-5965.2018.0242
ZHAO Lei, ZHU Maotao, XU Xiaoming, et al. Heat dissipation characteristics of double-layer battery pack under coupling of air and fluid domains[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 200-211. doi: 10.13700/j.bh.1001-5965.2018.0242(in Chinese)
Citation: ZHAO Lei, ZHU Maotao, XU Xiaoming, et al. Heat dissipation characteristics of double-layer battery pack under coupling of air and fluid domains[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 200-211. doi: 10.13700/j.bh.1001-5965.2018.0242(in Chinese)

空气域与流体域耦合作用下双层电池包散热特性

doi: 10.13700/j.bh.1001-5965.2018.0242
基金项目: 

国家自然科学基金 51505196

国家自然科学基金 51705208

江苏省研究生科研与实践创新计划 SJCX17_0583

清华大学汽车安全与节能国家重点实验室开放基金 KF1819

详细信息
    作者简介:

    赵磊  男, 硕士研究生。主要研究方向:动力电池热管理技术

    徐晓明  男, 博士, 副教授, 硕士生导师。主要研究方向:电动汽车热管理技术等

    通讯作者:

    徐晓明, E-mail: xuxiaoming3777@163.com

  • 中图分类号: U469.7

Heat dissipation characteristics of double-layer battery pack under coupling of air and fluid domains

Funds: 

National Natural Science Foundation of China 51505196

National Natural Science Foundation of China 51705208

Postgraduate Research & Practice Innovation Program of Jiangsu Province SJCX17_0583

the Science Fund of State Key Laboratory of Automotive Safety and Energy of Tsinghua University KF1819

More Information
  • 摘要:

    多层垒叠电池包内空气域的存在使各层模组热流场耦合在一起,从而影响电池模组的散热性能。以方形双层电池包为研究对象,建立考虑电池模组与空气对流换热的液冷热模型。该模型中电池发热功率基于试验测定结果,前处理软件采用ANSA确保仿真精度,后处理软件采用CFX,对在不同放电倍率、冷却液进液方向和进液流量下双层电池结构中空气域对液冷热管理系统热行为的影响进行了研究,并与不考虑空气域同工况仿真结果对比。结果表明:空气域的存在不会对液冷双层电池包上下层模组温度分布产生影响;但可以降低上下层模组间的温差,其中上下层模组最高温升的差值最大可降低49.1%,改善了整包电池温度的一致性。

     

  • 图 1  55Ah锂离子电池单体测温点布置和绝热设计

    Figure 1.  Arrangement of temperature measuring point and design of thermal insulation for 55Ah lithium-ion battery monomer

    图 2  0.5 C充放电倍率时55 Ah锂离子电池单体平均温度曲线

    Figure 2.  Average temperature curves of 55 Ah lithium-ion battery monomer at 0.5 C charge and discharge rate

    图 3  电池单体充放电过程发热功率

    Figure 3.  Thermal power of battery monomer in charge and discharge process

    图 4  电池单体充放电过程温度场分布

    Figure 4.  Temperature field distribution of battery monomer in charge and discharge process

    图 5  电池单体试验与仿真的温度数据比较

    Figure 5.  Comparison of temperature data of battery monomer between experiment and simulation

    图 6  双层电池包物理模型示意图

    Figure 6.  Schematic diagram of physical model of double-layer battery pack

    图 7  双层电池包冷却液进出口网格示意图

    Figure 7.  Schematic diagram of coolant inlet and outlet grid of double-layer battery pack

    图 8  双层电池包冷却液流向示意图

    Figure 8.  Schematic diagram of coolant flow direction of double-layer battery pack

    图 9  不同放电倍率下带空气域双层电池包上下模组温度分布云图(冷却液上进下出)

    Figure 9.  Temperature distribution contour of upper and lower modules of double-layer battery pack with air domain under different discharge rates (coolant inlet up and outlet down)

    图 10  不同放电倍率下不带空气域双层电池包上下模组温度分布云图(冷却液上进下出)

    Figure 10.  Temperature distribution contour of upper and lower modules of double-layer battery pack without air domain under different discharge rates (coolant inlet up and outlet down)

    图 11  不同放电倍率下带空气域双层电池包上下模组温度分布云图(冷却液下进上出)

    Figure 11.  Temperature distribution contour of upper and lower modules of double-layer battery pack with air domain under different discharge rates (coolant inlet down and outlet up)

    图 12  不同放电倍率下不带空气域双层电池包上下模组温度分布云图(冷却液下进上出)

    Figure 12.  Temperature distribution contour of upper and lower modules of double-layer battery pack without air domain under different discharge rates (coolant inlet down and outlet up)

    图 13  不同进液流量下带空气域双层电池包上下模组温度分布云图

    Figure 13.  Temperature distribution contour of upper and lower modules of double-layer battery pack with air domain under different inlet flow rates

    图 14  不同进液流量下不带空气域双层电池包上下模组温度分布云图

    Figure 14.  Temperature distribution contour of upper and lower modules of double-layer battery pack without air domain under different inlet flow rates

    表  1  55 Ah锂离子电池单体的热物性参数

    Table  1.   Thermal physical parameters of 55 Ah lithium-ion battery monomer

    材料 密度/(kg·m-3) 导热系数/(W·(m·K)-1) 比热容/(J·(kg·K)-1)
    电芯 2 123 30.6 913
    正极极耳 2 719 202.4 871
    负极极耳 8 978 387.6 381
    隔膜 1 008 0.334 4 1 978
    壳体 8 193 14.7 439.3
    下载: 导出CSV

    表  2  不同充放电倍率时55 Ah锂离子电池单体温度数据

    Table  2.   Temperature data of 55 Ah lithium-ion battery monomer at different charge and discharge rates

    充放电倍率/C 起始温度/℃ 终止温度/℃ 总温升/℃
    充电 放电 充电 放电 充电 放电
    0.5 20.39 20.19 31.40 32.01 11.01 11.82
    0.6 20.33 20.21 34.03 35.23 13.70 15.02
    0.8 20.20 20.25 35.54 36.75 15.34 16.50
    1 19.92 20.05 35.43 37.39 15.51 17.34
    1.2 20.11 20.11 37.25 39.92 17.14 19.81
    1.5 20.22 20.37 43.16 44.49 22.94 24.12
    2 20.27 20.29 45.39 47.99 25.12 27.70
    3 19.85 20.24 50.83 54.98 30.98 34.74
    5 20.21 20.16 51.41 63.43 31.20 43.27
    下载: 导出CSV

    表  3  不同充放电倍率时55 Ah锂离子电池单体发热功率

    Table  3.   Thermal power of 55 Ah lithium-ion battery monomer at different charge and discharge rates

    充放电倍率/C 平均发热功率/W
    充电 放电 充放电
    0.5 2.06 2.55 2.31
    0.6 2.95 3.89 3.42
    0.8 4.31 5.69 5.00
    1 5.42 7.60 6.51
    1.2 6.62 10.25 8.44
    1.5 10.06 15.60 12.83
    2 14.44 23.89 19.17
    3 22.26 44.93 33.60
    5 23.74 93.28 58.51
    下载: 导出CSV

    表  4  不同放电倍率下冷却液上进下出双层电池包上下层最高温升数据

    Table  4.   Maximum temperature rise data of upper and lower layers of double-layer battery pack with coolant inlet up and outlet down under different discharge rates

    放电倍率/C 带空气域 不带空气域 上下层模组最高温升差降低率/%
    上层模组最高温升/℃ 下层模组最高温升/℃ 上层模组最高温升/℃ 下层模组最高温升/℃
    1 7.397 7.723 7.117 7.758 49.1
    1.5 14.865 15.831 14.655 15.916 23.4
    2 22.764 24.244 22.553 24.415 20.5
    下载: 导出CSV

    表  5  不同放电倍率下冷却液下进上出双层电池包上下层最高温升数据

    Table  5.   Maximum temperature rise data of upper and lower layers of double-layer battery pack with coolant inlet down and outlet up under different discharge rates

    放电倍率/C 带空气域 不带空气域 上下层模组最高温升差降低率/%
    上层模组最高温升/℃ 下层模组最高温升/℃ 上层模组最高温升/℃ 下层模组最高温升/℃
    1 7.859 7.293 7.755 7.101 13.5
    1.5 16.018 14.704 15.914 14.514 6.1
    2 24.447 22.409 24.352 22.208 4.9
    下载: 导出CSV

    表  6  不同进液流量下双层电池包上下层最高温升数据

    Table  6.   Maximum temperature rise data of upper and lower layers of double-layer battery pack under different inlet flow rates

    进液流量/(L·h-1) 带空气域 不带空气域 上下层模组最高温升差降低率/%
    上层模组最高温升/℃ 下层模组最高温升/℃ 上层模组最高温升/℃ 下层模组最高温升/℃
    300 16.098 17.659 15.893 17.786 17.5
    500 14.865 15.831 14.655 15.916 23.4
    700 14.382 15.034 14.172 15.106 30.2
    下载: 导出CSV
  • [1] NAKAYAMA M, FUKUDA K, ARAKI T, et al.Thermal behavior of nickel metal hydride battery during rapid charge and discharge cycles[J].Electrical Engineering in Japan, 2006, 157(4):30-39. doi: 10.1002/(ISSN)1520-6416
    [2] 陈燕虹, 吴伟静, 刘宏伟, 等.纯电动汽车电池箱的热特性[J].吉林大学学报, 2014, 44(4):925-932. http://d.old.wanfangdata.com.cn/Periodical/jlgydxzrkxxb201404005

    CHEN Y H, WU W J, LIU H W, et al.The thermal characteristics of a pure electric vehicle battery box[J].Journal of Jilin University, 2014, 44(4):925-932(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jlgydxzrkxxb201404005
    [3] 姬芬竹, 刘丽君, 杨世春, 等.电动汽车动力电池生热模型和散热特性[J].北京航空航天大学学报, 2014, 40(1):18-24. http://bhxb.buaa.edu.cn/EN/Y2014/V40/I1/18

    JI F Z, LIU L J, YANG S C, et al.Heat generation model and heat dissipation characteristics of electric vehicle battery[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1):18-24(in Chinese). http://bhxb.buaa.edu.cn/EN/Y2014/V40/I1/18
    [4] PESARAN A A.Battery thermal models for hybrid vehicle simulations[J].Journal of Power Sources, 2002, 110(2):377-382. doi: 10.1016/S0378-7753(02)00200-8
    [5] LI X S, HE F, MA L.Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation[J].Journal of Power Sources, 2013, 238(238):395-402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f78ea98bad3e9e2eef1fa67744c7a51
    [6] SAW L H, YE Y H, TAY A A O, et al.Computational fluid dynamic and thermal analysis of lithium-ion battery pack with air cooling[J].Applied Energy, 2016, 177:783-792. doi: 10.1016/j.apenergy.2016.05.122
    [7] WANG T, TSENG K J, ZHAO J Y.Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model[J].Applied Thermal Engineering, 2015, 90:521-529. doi: 10.1016/j.applthermaleng.2015.07.033
    [8] PENDERGAST D R, DEMAURO E P, FLETCHER M, et al.A rechargeable lithium-ion battery module for underwater use[J].Journal of Power Sources, 2011, 196(2):793-800. doi: 10.1016/j.jpowsour.2010.06.071
    [9] YANG X H, TAN S C, LIU J.Thermal management of Li-ion battery with liquid metal[J].Energy Conversion and Management, 2016, 117:577-585. doi: 10.1016/j.enconman.2016.03.054
    [10] RAO Z H, HUO Y T, LIU X J, et al.Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam[J].Journal of the Energy Institute, 2015, 88(3):241-246. doi: 10.1016/j.joei.2014.09.006
    [11] 施尚, 余建祖, 谢永奇, 等.锂电池相变材料/风冷综合热管理系统温升特性[J].北京航空航天大学学报, 2017, 43(6):1278-1286. http://bhxb.buaa.edu.cn/CN/Y2017/V43/I6/1278

    SHI S, YU J Z, XIE Y Q, et al.Temperature rise characteristics of lithium battery phase change material/air-cooled integrated thermal management system[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6):1278-1286(in Chinese). http://bhxb.buaa.edu.cn/CN/Y2017/V43/I6/1278
    [12] 赵春荣, 曹文炅, 董缇, 等.圆柱形锂离子电池模组微通道液冷热模型[J].化工学报, 2017, 68(8):3232-3241. http://d.old.wanfangdata.com.cn/Periodical/hgxb201708034

    ZHAO C R, CAO W J, DONG T, et al.Liquid cooling and heating model for cylindrical lithium ion battery module[J].Journal of Chemical Industry, 2017, 68(8):3232-3241(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hgxb201708034
    [13] 徐晓明, 赵又群.不同工况下电动汽车冷板液冷系统散热性能试验研究[J].汽车工程, 2014, 36(9):1057-1062. http://d.old.wanfangdata.com.cn/Periodical/qcgc201409006

    XU X M, ZHAO Y Q.Experimental study on heat dissipation performance of cold plate liquid cooling system of electric vehicle under different working conditions[J].Automobile Engineering 2014, 36(9):1057-1062(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/qcgc201409006
    [14] ZHAO J T, RAO Z H, LI Y M.Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J].Energy Conversion and Management, 2015, 103:157-165. doi: 10.1016/j.enconman.2015.06.056
    [15] SRINIVASAN V, WANG C Y.Analysis of electrochemical and thermal behavior of Li-ion cells[J].Journal of the Electrochemical Society, 2003, 150(1):A98. doi: 10.1149/1.1526512
    [16] FAN L W, KHODADADI J M, PESARAN A A.A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J].Journal of Power Sources, 2013, 238:301-312. doi: 10.1016/j.jpowsour.2013.03.050
    [17] BERNARDI D.A general energy balance for battery systems[J].Journal of the Electrochemical Society, 1985, 132(1):5-15. doi: 10.1149-1.2113792/
    [18] FANG W F, KWON O J, WANG C Y.Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell[J].International Journal of Energy Research, 2010, 34(2):107-115. doi: 10.1002/er.1652
    [19] REYNIER Y F, YAZAMI R, FULTZ B.Thermodynamics of lithium intercalation into graphites and disordered carbons[J].Journal of the Electrochemical Society, 2004, 151(3):A422. doi: 10.1149/1.1646152
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  601
  • HTML全文浏览量:  55
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-27
  • 录用日期:  2018-07-28
  • 网络出版日期:  2019-01-20

目录

    /

    返回文章
    返回
    常见问答