留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地外天体起飞羽流导流气动力效应仿真

苏杨 蔡国飙 舒燕 叶青 张明星 贺碧蛟

苏杨, 蔡国飙, 舒燕, 等 . 地外天体起飞羽流导流气动力效应仿真[J]. 北京航空航天大学学报, 2019, 45(7): 1415-1423. doi: 10.13700/j.bh.1001-5965.2018.0660
引用本文: 苏杨, 蔡国飙, 舒燕, 等 . 地外天体起飞羽流导流气动力效应仿真[J]. 北京航空航天大学学报, 2019, 45(7): 1415-1423. doi: 10.13700/j.bh.1001-5965.2018.0660
SU Yang, CAI Guobiao, SHU Yan, et al. Simulation of plume diversion aerodynamic effect for take-off from celestial bodies outside the Earth[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1415-1423. doi: 10.13700/j.bh.1001-5965.2018.0660(in Chinese)
Citation: SU Yang, CAI Guobiao, SHU Yan, et al. Simulation of plume diversion aerodynamic effect for take-off from celestial bodies outside the Earth[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1415-1423. doi: 10.13700/j.bh.1001-5965.2018.0660(in Chinese)

地外天体起飞羽流导流气动力效应仿真

doi: 10.13700/j.bh.1001-5965.2018.0660
详细信息
    作者简介:

    苏杨   男, 博士研究生。主要研究方向:真空羽流效应

    蔡国飙   男, 博士, 教授, 博士生导师。主要研究方向:卫星真空羽流效应、液体火箭发动机多学科优化设计与仿真技术等

    通讯作者:

    蔡国飙, E-mail: cgb@buaa.edu.cn

  • 中图分类号: V476.3

Simulation of plume diversion aerodynamic effect for take-off from celestial bodies outside the Earth

More Information
  • 摘要:

    探测器自地外天体采样返回过程中,发动机羽流作用于起飞平台后返流至起飞器表面,产生气动力效应及干扰力矩。针对圆锥形羽流导流结构,利用计算流体力学/直接模拟蒙特卡罗(CFD/DSMC)耦合方法,对起飞器距离起飞平台200~700 mm,偏转角度0°~5°范围内的羽流导流气动力效应进行了仿真计算。计算结果表明,随着上升距离增加和偏转角度增大,起飞器受到的力矩出现了反向增加现象,严重影响起飞稳定。研究发现,上述现象产生的主要原因为偏转角度增加时,起飞器距离起飞平台较远一侧的羽流与起飞平台作用点由圆锥导流结构逐渐偏移至平面位置,导致羽流作用于起飞平台后的流动方向由贴近起飞平台向侧面流动急剧转变为反弹至起飞器底面方向流动,从而使远离起飞平台的一侧所受力矩高于靠近起飞平台一侧,产生反向力矩。

     

  • 图 1  起飞器与起飞平台模型

    Figure 1.  Model of ascender and launching pad

    图 2  上升距离与偏转角度示意图

    Figure 2.  Schematic diagram of take-off distance and deflection angle

    图 3  CFD计算边界条件

    Figure 3.  Computing boundary conditions of CFD

    图 4  3种不同网格压强结果对比

    Figure 4.  Pressure comparison of three different grid results

    图 5  DSMC计算边界条件

    Figure 5.  Computing boundary conditions of DSMC

    图 6  4条仿真曲线与实验压强测点位置

    Figure 6.  Four simulation curves and experimental pressure measuring point position

    图 7  实验与仿真结果对比

    Figure 7.  Comparison of experimental and simulation results

    图 8  连续流场压强云图

    Figure 8.  Pressure contour of continuous flow field

    图 9  βφ随上升距离的变化

    Figure 9.  Variation of β and φ with rising distance

    图 10  稀薄流场压强云图

    Figure 10.  Pressure contour of rarefied flow field

    图 11  起飞器底面压强云图

    Figure 11.  Pressure contour of bottom of ascender

    图 12  Ypc方向力矩变化趋势

    Figure 12.  Torque variation trend of Ypc direction

    图 13  Case 1工况下羽流密度场膨胀波和压缩波示意图

    Figure 13.  Schematic diagram of expansion and compression waves of plume density field of Case 1

    图 14  经过压缩波和膨胀波后的羽流速度变化

    Figure 14.  Variation of plume velocity after expansion and compression waves

    图 15  Case 15工况下lα选取示意图

    Figure 15.  Schematic diagram of l and α selection under working condition of Case 15

    图 16  远离起飞器一侧羽流作用点相对位置变化规律

    Figure 16.  Variation of relative position of plume impact point on the side far away from ascender

    图 17  远离起飞器一侧压缩波角度α变化规律

    Figure 17.  Variation of compression wave angle α on the side far away from ascender

    表  1  起飞器与起飞平台相对位置

    Table  1.   Relative position of ascender and launching pad

    偏转角度θ/(°) 上升距离D/mm
    200 300 400 500 700
    0 Case 1 Case 3 Case 7 Case 11 Case 15
    1 Case 2 Case 4 Case 8 Case 12 Case 16
    3 Case 5 Case 9 Case 13 Case 17
    5 Case 6 Case 10 Case 14 Case 18
    下载: 导出CSV
  • [1] 果琳丽, 王平, 梁鲁, 等.载人月面着陆及起飞技术初步研究[J].航天返回与遥感, 2013, 34(4):10-16. doi: 10.3969/j.issn.1009-8518.2013.04.002

    GUO L L, WANG P, LIANG L, et al.Preliminary research on manned lunar landingand lifting off technology[J].Spacecraft Recovery & Remote Sensing, 2013, 34(4):10-16(in Chinese). doi: 10.3969/j.issn.1009-8518.2013.04.002
    [2] CAPORICCI M. European crew and logistics vehicles for ISS and exploration missions: AIAA-2005-3252[R].Reston, VA: AIAA, 2005.
    [3] BENNETT F V.Apollo experience report: Mission planning for lunar module descent and ascent: NASA-TN-D-6846[R].Washington, D.C.: NASA, 1972.
    [4] EVANS R, SPARKS O.Launch deflector design criteria and their application to the SATURN C-1 deflector: NASA-TN-D-1275[R].Washington, D.C.: NASA, 1963.
    [5] TSUTSUMI S, KATO S, FUKUDA K, et al.Effect of deflector shape on acoustic field of launch vehicle at lift-off: AIAA-2009-0328[R].Reston, VA: AIAA, 2009.
    [6] SACHDEV J S, AHUJA V, HOSANGADI A, et al.Analysis of flame deflector spray nozzles in rocket engine test stands: AIAA-2010-6972[R].Reston, VA: AIAA, 2010.
    [7] ANOOP P, UNNIKRISHNAN C, SUNDAR B, et al.Thermal analysis of a jet deflector subjected to liquid engine jet exhaust in a static test[J].Heat Transfer Engineering, 2015, 36(4):346-351. doi: 10.1080/01457632.2014.923979
    [8] OH H, LEE J, UM H, et al.Numerical study for flame deflector design of a space launch vehicle[J].Advances in Space Research, 2017, 59(7):1833-1847. doi: 10.1016/j.asr.2016.12.038
    [9] 贺卫东.发动机真空羽流导流力热效应的CFD/DSMC耦合仿真及试验研究[D].北京: 北京理工大学, 2015.

    HE W D.Numerical simulation and experiment research on force and heat effect of vacuum plume with CFD & DSMC coupled method[D].Beijing: Beijing Institute of Technology, 2015(in Chinese).
    [10] 贺卫东, 党海燕.CFD/DSMC耦合仿真方法在天基发射羽流导流技术研究中的应用[J].导弹与航天运载技术, 2015(2):53-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddyhtyzjs201502016

    HE W D, DANG H Y.Application of CFD/DSMC coupling simulation method in the research of space-based launch plume diversion technique[J].Missiles and Space Vehicles, 2015(2):53-57(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddyhtyzjs201502016
    [11] 贺卫东, 党海燕, 鲁志刚, 等.基于地外天体起飞的真空羽流导引技术研究方案评述[J].航天器环境工程, 2015, 32(2):206-210. doi: 10.3969/j.issn.1673-1379.2015.02.012

    HE W D, DANG H Y, LU Z G, et al.Review of the studies of vacuum plume diversion technique for probe taking off from celestial bodies outside the Earth[J].Spacecraft Environment Engineering, 2015, 32(2):206-210(in Chinese). doi: 10.3969/j.issn.1673-1379.2015.02.012
    [12] 贺卫东, 党海燕, 许明艳, 等.地外天体起飞过程真空羽流导流力热效应研究[J].推进技术, 2015, 36(8):1151-1156. http://d.old.wanfangdata.com.cn/Periodical/tjjs201508005

    HE W D, DANG H Y, XU M Y, et al.Research on impact and thermal effect of celestial takeoff vacuum exhaust plume[J].Journal of Propulsion Technology, 2015, 36(8):1151-1156(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201508005
    [13] ZHANG M X, CAI G B, TANG Z Y, et al.Experimental and numerical research on the diversion effect of a conic flame deflector for a lunar module ascent stage[J].Journal of Aerospace Engineering, 2016, 29(5):04016021. doi: 10.1061/(ASCE)AS.1943-5525.0000611
    [14] 张萃, 王刚, 刘峰, 等.着陆器顶板羽流导向设计及验证技术[J].航天返回与遥感, 2016, 37(2):34-41. doi: 10.3969/j.issn.1009-8518.2016.02.005

    ZHANG C, WANG G, LIU F, et al.Design and verification thechnology of plume guiding device on lander roof[J].Spacecraft Recovery & Remote Sensing, 2016, 37(2):34-41(in Chinese). doi: 10.3969/j.issn.1009-8518.2016.02.005
    [15] 黄琳, 陈伟芳, 吴其芬, 等.姿控发动机内流场及高空羽流流场的DSMC一体化数值模拟[J].空气动力学学报, 2001, 19(4):383-387. doi: 10.3969/j.issn.0258-1825.2001.04.003

    HUANG L, CHEN W F, WU Q F, et al.The overall numerical simulation of both high-altitude plume flowfield and inflow region with DSMC method[J].Acta Aerodynamica Sinica, 2001, 19(4):383-387(in Chinese). doi: 10.3969/j.issn.0258-1825.2001.04.003
    [16] 程晓丽, 李明智, 毛铭芳, 等.高空羽流场的DSMC计算和实验研究[J].空气动力学学报, 2002, 20(1):9-14. doi: 10.3969/j.issn.0258-1825.2002.01.002

    CHENG X L, LI M Z, MAO M F, et al.Experimental and numerical investigation of a high-altitude plume flow using DSMC method[J].Acta Aerodynamica Sinica, 2002, 20(1):9-14(in Chinese). doi: 10.3969/j.issn.0258-1825.2002.01.002
    [17] 黄琳, 聂万胜, 陈伟芳.姿控发动机高空羽流流场干扰效应的DSMC方法研究[J].空气动力学学报, 2003, 21(1):104-108. doi: 10.3969/j.issn.0258-1825.2003.01.014

    HUANG L, NIE W S, CHEN W F.Studying of multi-plume interference effects for attitude-control thruster with DSMC method[J].Acta Aerodynamica Sinica, 2003, 21(1):104-108(in Chinese). doi: 10.3969/j.issn.0258-1825.2003.01.014
    [18] 蔡国飙, 贺碧蛟.PWS软件应用于探月着陆器羽流效应数值模拟研究[J].航天器环境工程, 2010, 27(1):18-23. doi: 10.3969/j.issn.1673-1379.2010.01.003

    CAI G B, HE B J.PWS software applied to numerical simulation on plume effect of lunar exploration lander[J].Spacecraft Environment Engineering, 2010, 27(1):18-23(in Chinese). doi: 10.3969/j.issn.1673-1379.2010.01.003
    [19] 张熇, 蔡国飙, 许映乔, 等.嫦娥三号着陆器软着陆过程中羽流仿真分析及试验研究[J].中国科学:技术科学, 2014, 44(4):344-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201404002

    ZHANG H, CAI G B, XU Y Q, et al.Simulation and experimental study of the plume during the Chang'E-3 lunar landing[J].Scientia Sinica Technologica, 2014, 44(4):344-352(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201404002
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  22
  • PDF下载量:  497
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-16
  • 录用日期:  2018-12-21
  • 网络出版日期:  2019-07-20

目录

    /

    返回文章
    返回
    常见问答