[1] Wu Y, Lim J,Yang M H.Online object tracking:a benchmark[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2013:2411-2418. [2] 邵文坤,黄爱民, 韦庆.目标跟踪方法综述[J].影像技术,2006(1):17-20. Shao W K,Huang A M,Wei Q.Target tracking method review[J].Image Technology,2006(1):17-20(in Chinese). [3] Zhong W, Lu H,Yang M H.Robust object tracking via sparsity-based collaborative model[C]//Proc IEEE Comput Soc Conf Comput Vision Pattern Recognition.Washington,DC:IEEE Computer Society,2012:1838-1845. [4] 沈丁成,薛彦兵, 张桦,等.一种鲁棒的基于在线boosting目标跟踪算法研究[J].光电子·激光,2013,24(11):30. Shen D C,Xue Y B,Zhang H,et al.A robust online boosting target tracking algorithm based on the research[J].Journal of Photoelectron·Laser,2013,24(11):30(in Chinese). [5] Grabner H, Grabner M,Bischof H.Real-time tracking via on-line boosting[C]//BMVC 2006-Proceedings of the British Machine Vision Conference 2006.Edinburgh:British Machine Vision Association,2006:47-56. [6] 张颖颖,王红娟, 黄义定.基于在线多实例学习的跟踪研究[J].南阳师范学院学报,2012,10(12):35-37. Zhang Y Y,Wang H J,Huang Y D.Based on multiple instance learning online tracking study[J].Journal of Nanyang Normal University,2012,10(12):35-37(in Chinese). [7] Babenko B, Belongie S,Yang M H.Visual tracking with online multiple instance learning[C]//2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.Piscataway,NJ:IEEE Computer Society,2009:983-990. [8] Avidan S. Ensemble tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(2):261-271. [9] Ross D, Lim J,Lin R S,et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision,2008,77(1):125-141. [10] 齐飞,罗予频, 胡东成.基于均值漂移的视觉目标跟踪方法综述[J].计算机工程,2007,33(21):24-27. Qi F,Luo Y P,Hu D C.Visual target tracking method based on mean shift review[J].Computer Engineering,2007,33(21):24-27(in Chinese). [11] Black M,Jepson A. Eigentracking:robust maching and tracking of articulated objects using a view based representation[J].International Journal of Computer Vision,1998,26(1):63-84. [12] Yang A Y, Sastry S S,Ganesh A,et al.Fast 1 -minimization algorithms and an application in robust face recognition:a review[C]//Image Processing.Hong Kong:IEEE,2010:1849-1852. [13] Wright J, Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227. [14] Mei X, Ling H.Robust visual tracking using L1 minimization[C]//Computer Vision.Anchorage,Alaska:IEEE,2009:1436-1443. [15] Mei X, Ling H,Wu Y,et al.Minimum error bounded efficientl1 tracker with occlusion detection[C]//Computer Vision and Pattern Recognition.Colorado Springs:IEEE,2011:1257-1264. [16] Bao C L, Wu Y,Ling H,et al.Real time robust l1 tracker using accelerated proximal gradient approach[C]//Proc IEEE Comput Soc Conf Comput Vision Pattern Recognition.Washington,DC:IEEE Computer Society,2012:1830-1837. [17] Zhang T Z, Ghanem B,Liu S,et al.Robust visual tracking via multi-task sparse learning[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2012:2042-2049. [18] Zhang D, Yang M,Feng X.Sparse representation or collaborative representation:which helps face recognition?[C]//Computer Vision,2011:471-478. [19] Xiao Z Y, Lu H,Wang D.Object tracking with L2-RLS[C]//Proceedings-International Conference on Pattern Recognition.Piscataway,NJ:Institute of Electrical and Electronics Engineers Inc,2012:1351-1354. [20] Adam A, Rivlin E,Shimshoni I.Robust fragments-based tracking using the integral histogram[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York:Electronics Engineers Computer Society,2006:798-805. [21] Kwon J, Lee K M.Visual tracking decomposition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2010:1269-1276. [22] Maggio E, Cavallaro A.Hybrid particle filter and mean shift tracker with adaptive transition model[C]//ICASSP,IEEE International Conference on Acoustics,Speech and Signal Processing-Proceedings.Philadelphia,PA:Institute of Electrical and Electronics Engineers Inc,2005:221-224. |