[1] 秦元勋.有时滞的系统的无条件稳定性[J].数学学报,1960,10(1):125-142. Chin Y S.Unconditional stability of systems with time lags[J].Acta Mathematica Sinica,1960,10(1):125-142(in Chinese).
[2] 秦元勋,俞元洪.一类时滞微分系统无条件稳定的条件[J].控制理论与应用,1984,1(1):23-35. Chin Y S,Yu Y H.Unconditional stability conditions for a class of differential systems with time delay[J].Journal of Control Theory and Applications,1984,1(1):23-35(in Chinese).
[3] 周超顺,邓聚龙.线性定常时滞系统全时滞渐近稳定的充分代数判据[J].自动化学报,1990,16(1):62-65. Zhou C S,Deng J L.A sufficient algebra criteria for stability of linear constant time-delay system[J].Acta Automatica Sinica,1990,16(1):62-65(in Chinese).
[4] Cao D Q,He P,Ge Y M.Simple algebraic criteria for stability of neutral delay-differential systems[J].Journal of the Franklin Institute,2005,342(3):311-320.
[5] Hu G D,Hu G D,Cahlon B.Algebraic criteria for stability of linear neutral systems with a single delay[J].Journal of Computational and Applied Mathematics,2001,135(1):125-133.
[6] He P,Cao D Q.Algebraic stability criteria of linear neutral systems with multiple time delays[J].Applied Mathematics and Computation,2004,155(3):643-653.
[7] Niu W,Wang D.Algebraic analysis of bifurcation and limit cycles for biological systems[M].Berlin,Heidelberg:Springer,2008:156-171.
[8] Niu W,Wang D.Algebraic approaches to stability analysis of biological systems[J].Mathematics in Computer Science,2008,1(3):507-539.
[9] Wang D.Elimination methods[M].Berlin,Heidelberg:Springer,2001:193-224.
[10] Buchberger B.Gröbner bases:An algorithmic method in polynomial ideal theory[J].Multidimensional Systems Theory,1985:184-232.
[11] Faugère J C.A new efficient algorithm for computing Gröbner bases (F4)[J].Journal of Pure and Applied Algebra,1999,139(1):61-88.
[12] Yang L,Xia B.Real solution classification for parametric semi-algebraic systems[C]//Algorithmic Algebra and Logic[S.l.:s.n.],2005:281-289.
[13] 宋永利,韩茂安,魏俊杰.多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分支[J].数学年刊:A辑,2005,25(6):783-790. Song Y L,Han M A,Wei J J.Stability and global Hopf bifurcation for a predator-prey model with two delays[J].Chinese Annals of Mathematics:Series A,2005,25(6):783-790(in Chinese).
[14] Bhattacharyya S P,Chapellat H,Keel L H.Robust control-the parametric approach[M].New York:Prentice Hall PTR,1995:446-472.
[15] Lancaster P,Tismenetsky M.The theory of matrices:With applications[M].Pittsburgh:Academic Press,1985:89-103.
[16] Xia B.DISCOVERER:A tool for solving semi-algebraic systems[J].ACM Communications in Computer Algebra,2007,41(3):102-103.
[17] Kar T K,Pahari U K.Non-selective harvesting in prey-predator models with delay[J].Communications in Nonlinear Science and Numerical Simulation,2006,11(4):499-509.
[18] Cooke K L.Stability analysis for a vector disease model[J].Journal of Mathmatics,1979,9(1):31-42.
[19] Meng X,Chen L,Wu B.A delay SIR epidemic model with pulse vaccination and incubation times[J].Nonlinear Analysis:Real World Applications,2010,11(1):88-98. |