北京航空航天大学学报 ›› 2016, Vol. 42 ›› Issue (8): 1698-1708.doi: 10.13700/j.bh.1001-5965.2015.0494

• 论文 • 上一篇    下一篇

基于ST-SRCKF的超高速强机动目标跟踪算法

方君1, 戴邵武2, 许文明3, 邹杰4, 王永庭4   

  1. 1. 海军航空工程学院 研究生管理大队, 烟台 264001;
    2. 海军航空工程学院 控制工程系, 烟台 264001;
    3. 南华大学 网络信息中心, 衡阳 421001;
    4. 中国航空工业集团光电控制技术重点实验室, 洛阳 471009
  • 收稿日期:2015-07-22 出版日期:2016-08-20 发布日期:2015-12-08
  • 通讯作者: 戴邵武,Tel.:0535-6635491,E-mail:daiswhy@163.com E-mail:daiswhy@163.com
  • 作者简介:方君,男,硕士研究生。主要研究方向:飞行器综合导航技术。Tel.:15389161517。E-mail:1084564908@qq.com;戴邵武,男,博士,教授。主要研究方向:惯性技术与组合导航。Tel.:0535-6635491。E-mail:daiswhy@163.com;许文明,男,学士,工程师。主要研究方向:计算机应用及开发。
  • 基金资助:
    国家自然科学基金(61203168);航空科学基金(20135184007)

Highly maneuvering hypervelocity-target tracking algorithm based on ST-SRCKF

FANG Jun1, DAI Shaowu2, XU Wenming3, ZOU Jie4, Wang Yongting4   

  1. 1. Graduate Students'Brigade, Naval Aeronautical and Astronautical University, Yantai 264001, China;
    2. Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China;
    3. Information Management Center, Nanhua University, Hengyang 421001, China;
    4. Science and Technology on Electron-optic Control Laboratory, AVIC, Luoyang 471009, China
  • Received:2015-07-22 Online:2016-08-20 Published:2015-12-08

摘要: 针对超高速强机动目标运动模型难以准确建立且观测数据易出现不良量测而导致滤波发散的问题,提出一种适用于超高速强机动目标的跟踪算法。该算法根据正交性原理推导了一种新的强跟踪平方根容积卡尔曼滤波(ST-SRCKF)结构,并引入多重渐消因子,渐消因子求解方法和作用位置均不同于已有的ST-SRCKF。根据新息的统计学特性,即新息协方差矩阵的迹服从卡方分布,建立了一种改进的CS-Jerk模型,该模型对目标机动的描述更准确,它与改进ST-SRCKF算法的结合实现了对超高速强机动目标的高精度跟踪。仿真结果表明,改进算法对超高速强机动目标的跟踪性能更佳。

关键词: 强机动目标跟踪, 平方根容积卡尔曼滤波(SRCKF), 强跟踪滤波(STF), 多重渐消因子, CS-Jerk模型

Abstract: The movement model of highly maneuvering hypervelocity-target is difficult to construct accurately, and the existence of bad measurements in tracking process may lead to filtering divergence. In order to deal with these problems, a tracking algorithm applicable to highly maneuvering hypervelocity-target is proposed. This algorithm derives a new strong tracking square-root cubature Kalman filter (ST-SRCKF) structure from the orthogonality principle, and introduces multiple fading factors. The solution and function position of fading factors are both different from original ST-SRCKF. According to the statistical characteristics of innovation that the trace of innovation covariance matrix is in a chi-square distribution, a modified CS-Jerk model is constructed. The model describes target movement more accurately. When the modified CS-Jerk model is combined with the modified ST-SRCKF, highly maneuvering hypervelocity-target is tracked with high precision. Simulation results show that the modified algorithm has better tracking performance for highly maneuvering hypervelocity-target.

Key words: highly maneuvering target tracking, square-root cubature Kalman filter (SRCKF), strong tracking filter (STF), multiple fading factors, CS-Jerk model

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发