留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极小化相位误差加权间断有限元辛方法

朱帅 周钢 刘晓梅 翁史烈

朱帅, 周钢, 刘晓梅, 等 . 极小化相位误差加权间断有限元辛方法[J]. 北京航空航天大学学报, 2016, 42(8): 1682-1690. doi: 10.13700/j.bh.1001-5965.2015.0523
引用本文: 朱帅, 周钢, 刘晓梅, 等 . 极小化相位误差加权间断有限元辛方法[J]. 北京航空航天大学学报, 2016, 42(8): 1682-1690. doi: 10.13700/j.bh.1001-5965.2015.0523
ZHU Shuai, ZHOU Gang, LIU Xiaomei, et al. Symplectic weighted discontinuous Galerkin method with minimal phase-lag[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1682-1690. doi: 10.13700/j.bh.1001-5965.2015.0523(in Chinese)
Citation: ZHU Shuai, ZHOU Gang, LIU Xiaomei, et al. Symplectic weighted discontinuous Galerkin method with minimal phase-lag[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1682-1690. doi: 10.13700/j.bh.1001-5965.2015.0523(in Chinese)

极小化相位误差加权间断有限元辛方法

doi: 10.13700/j.bh.1001-5965.2015.0523
基金项目: 国家自然科学基金(50876066);上海高校青年教师培养资助计划(ZZZZEGD15007);上海第二工业大学校基金(EGD15XQD14);上海第二工业大学应用数学重点学科(XXKZD1304)
详细信息
    作者简介:

    朱帅,男,博士研究生。主要研究方向:计算流体力学、结构力学、辛方法、有限元方法。E-mail:zhushuaisjtu@qq.com,zhushuai@sjtu.edu.cn;翁史烈,男,博士,院士,博士生导师。主要研究方向:燃气轮机总体设计、燃气轮机动态控制。E-mail:slweng@sjtu.edu.cn

    通讯作者:

    翁史烈,E-mail:slweng@sjtu.edu.cn

  • 中图分类号: O241;O302

Symplectic weighted discontinuous Galerkin method with minimal phase-lag

  • 摘要: 对于线性Hamilton系统,辛差分方法可以保持系统的辛结构,有限元方法可以保证系统的辛性质并具有能量守恒特性。但辛差分方法和有限元方法时域上仍然存在相位误差,使得计算的精度不是很理想。提出极小化相位误差加权间断有限元辛方法(WDG-PF),该方法是辛方法,同时,对Hamilton系统的求解具有极小的相位误差。数值显示该方法可以保证Hamilton系统的能量守恒性。WDG-PF方法解决了时间有限元方法(TFE)存在的相位漂移现象,同时指出间断有限元方法可以通过加权处理达到保辛要求。WDG-PF方法相较于针对相位误差设计的计算格式分数步对称辛算法(FSJS)、辛Runge-Kutta-Nystrom(RKN)格式以及辛分块Runge-Kutta(SPRK)等方法,WDG-PF显著地减少相位误差,和显著提高Hamilton系统能量精度的优点。相位误差和能量误差几乎达到计算机精度。同时单元内部具有超收敛现象。特别针对高低混频Hamilton系统,传统方法很难在固定的步长下同时实现对高频和低频信号的精确仿真,WDG-PF方法则可以在大步长下同时实现对低频信号和高频信号的高精度仿真。数值显示,WDG-PF方法切实有效。

     

  • [1] FENG K.Difference schemes for Hamiltonian formalism andsymplectic geometry[J].Journal of Computational Mathematics,1986,4(3):279-289.
    [2] FENG K.QIN M.Symplectic geometric algorithms for Hamiltonian systems[M].Heidelberg:Springer,2010:279-289.
    [3] CALVO M P.Numerical Hamiltonian problems[M].London:CRC Press,1994:315-356.
    [4] BRUSA L,NIGRO L.A one-step method for direct integration of structural dynamic equations[J].International Journal for Numerical Methods in Engineering,1980,15(5):685-699.
    [5] 邢誉峰,杨蓉.单步辛算法的相位误差分析及修正[J].力学学报,2007,39(5):668-671.XING Y F,YANG R.Phase errors and their correction in symplectic implicit single-step algorithm[J].Chinese Journal of Theoretical and Applied Mechanics,2007,39(5):668-671(in Chinese).
    [6] 邢誉峰,冯伟.李级数算法和显式辛算法的相位分析[J].计算力学学报,2009,26(2):167-171.XING Y F,FENG W.Phase analysis of Lie series algorithm and explicit symplectic algorithm[J].Chinese Journal of Computational Mechanics,2009,26(2):167-171(in Chinese).
    [7] 陈璐,王雨顺.保结构算法的相位误差分析及其修正[J].计算数学,2014,36(3):271-290.CHEN L,WANG Y S.Phase error analysis and correction of structure preserving algorithms[J].Mathematica Numerica Sinica,2014,36(3):271-290(in Chinese).
    [8] VYVER H V D.A symplectic Runge-Kutta-Nystrom method with minimal phase-lag[J].Physics Letters A,2007,367(1):16-24.
    [9] MONOVASILIS T,KALOGIRATOU Z,SIMOS T E.Exponentially fitted symplectic runge-Kutta-Nyströmethods[J].Applied Mathematics & Information Sciences,2013,7(1):81-85.
    [10] MONOVASILIS T,KALOGIRATOU Z,SIMOS T E.Symplectic Partitioned Runge-Kutta methods with minimal phase-lag[J].Computer Physics Communications,2010,181(7):1251-1254.
    [11] SIMOS T E.A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schr dinger equation[J].Journal of Mathematical Chemistry,2011,49(10):2486-2518.
    [12] MONOVASILIS T,KALOGIRATOU Z,SIMOS T E.Two new phase-fitted symplectic partitioned Runge-Kutta methods[J].International Journal of Modern Physics C,2011,22(12):1343-1355.
    [13] 刘晓梅,周钢,王永泓,等.辛算法的纠飘研究[J].北京航空航天大学学报,2013,39(1):22-26.LIU X M,ZHOU G,WANG Y H,et al.Rectifying drifts of symplectic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(1):22-26(in Chinese).
    [14] TANG W,SUN Y.Time finite element methods:A unified framework for numerical discretizations of ODEs[J].Applied Mathematics & Computation,2012,219(4):2158-2179.
    [15] 汤琼,陈传淼.Hamilton系统的连续有限元法[J].应用数学和力学.2007.28(8):958-966 TANG Q,CHEN C M.Continuous finite element methods of Hamiltonian systems[J].Applied Mathematics and Mechanics,2007,28(8):958-966(in Chinese).
    [16] 陈传淼,汤琼.Hamilton系统的有限元研究[J].数学物理学报:2011,31A(1):18-33.CHEN C M,TANG Q.Study of finite element for Hamiltonian systems[J].Acta Mathematica Scientia,2011,31A(1):18-33(in Chinese).
    [17] HU S F,CHEN C M.Runge-Kutta method finite element method and regular algorithms for Hamiltonian system[J].Applied Mathematics & Mechanics:English Edition,2013,34(6):747-760.
    [18] LI C H,CHEN C M.Ultraconvergence for averaging discontinuous finite elements and its applications in Hamiltonian system[J].Applied Mathematics & Mechanics:English Edition,2011,32(7):943-956.
    [19] DELFOUR M,HAGER W,TROCHU F.Discontinuous Galerkin methods for ordinary differential equations[J].Mathematics of Computation,1981,36(154):455-473.
    [20] WANG D,XIAO A,LI X.Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian systems[J].Computer Physics Communications,2013,184(2):303-310.
    [21] QUISPEL G R W,MCLAREN D I.A new class of energy-preserving numerical integration methods[J].Journal of Physics A Mathematical & Theoretical,2008,41(4):75-97.
  • 加载中
计量
  • 文章访问数:  906
  • HTML全文浏览量:  115
  • PDF下载量:  410
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-10
  • 网络出版日期:  2016-08-20

目录

    /

    返回文章
    返回
    常见问答