[1] SALTELLI A. Sensitivity analysis for importance assessment[J].Risk Analysis,2002, 22(3):579-590.
[2] BORGONOVO E,APOSTOLAKIS G E.A new importance measure for risk-informed decision-making[J].Reliability Engineering and System Safety,2001,72(2):193-212.
[3] BORGONOVO E,APOSTOLAKIS G E,TARANTOLA S,et al.Comparison of local and global sensitivity analysis techniques in probability safety assessment[J].Reliability Engineering and System Safety,2003,79(2):175-185.
[4] TARANTOLA S,KOPUSTINSKAS V,BOLADO-LAVIN R,et al.Sensitivity analysis using contribution to sample variance plot:Application to a water hammer model[J].Reliability Engineering and System Safety,2012,99(2):62-73.
[5] WEI P F,LU Z Z,RUAN W B,et al.Regional sensitivity analysis using revised mean and variance ratio functions[J].Reliability Engineering and System Safety,2014,121(1):121-135.
[6] SALTELLI A,RATTO M,ANDRES T,et al.Global sensitivity analysis[M].New York:John Wiley & Sons,2008:115-174.
[7] SALTELLI A,MARIVOET J.Non-parametric statistics in sensitivity analysis for model output:A comparison of selected techniques[J].Reliability Engineering and System Safety,1990,28(2):229-253.
[8] ZHANG X F,PANDEY M D.An effective approximation for variance-based global sensitivity analysis[J].Reliability Engineering and System Safety,2014,121(4):164-174.
[9] WEI P,LU Z Z,SONG J W.A new variance-based global sensitivity analysis technique[J].Computation Physics Communication,2013,184(11):2540-2551.
[10] DEMAN G, KONAKLI K,SUDRET B,et al.Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in multi-layered hydrogeological model[J].Reliability Engineering and System Safety,2016,147:156-169.
[11] PIANOSI F,WAGENER T.A simple and efficient method for global sensitivity analysis based on cumulative distribution functions[J].Environmental Modelling & Software,2015,67:1-11.
[12] BORGONOVO E.A new uncertainty importance measure[J].Reliability Engineering and System Safety,2007,92(6):771-784.
[13] LIU Q,HOMMA T.A new importance measure for sensitivity analysis[J].Journal of Nuclear Science and Technology,2010,47(1):53-61.
[14] CUI L J,LU Z Z,ZHAO X P.Moment-independent importance measure of basic random variable and its probability density evolution solution[J].Science China Technological Sciences,2010,53(4):1138-1145.
[15] LI L Y,LU Z Z,FENG J,et al.Moment-independent importance measure of basic variable and its state dependent parameter solution[J].Structural Safety,2012,38:40-47.
[16] 张磊刚,吕震宙,陈军.基于失效概率的矩独立重要性测度的高效算法[J].航空学报,2014,35(8):2199-2206.ZHANG L G,LYU Z Z,CHEN J.An efficient method of failure probability-based moment-independent importance measure[J].Acta Aeronautica et Astronautica Sinica,2014,35(8):2199-2206(in Chinese).
[17] WEI P F,LU Z Z,HAO W R,et al.Efficient sampling methods for global reliability sensitivity analysis[J].Computation Physics Communication,2012,183(8):1728-1743.
[18] DITLEVSEN O,MADSEN H O.Structural reliability methods[M].Chichester:Wiley,1996:102-109.
[19] RASHKI M,MIRI M,MOGHADDAM M A.A new efficient simulation method to approximate the probability of failure and most probability point[J].Structural Safety,2012,39(4):22-29.
[20] ZHAI Q Q,YANG J,ZHAO Y.Space-partition method for the variance-based sensitivity analysis:Optimal partition scheme and comparative study[J].Reliability Engineering and System Safety,2014,131:66-82.
[21] 吕召燕,吕震宙,李贵杰,等.基于密度权重的可靠性灵敏度分析方法[J].航空学报,2014,35(1):179-186.LV Z Y,LV Z Z,LI G J,et al.Reliability sensitivity analysis method based on weight index of density[J].Acta Aeronautica et Astronautica Sinica,2014,35(1):179-186(in Chinese).
[22] SOBOL I M.Uniformly distributed sequences with additional uniformity properties[J].USSR Computational Mathematics and Mathematical Physics,1976,16(5):236-242. |