北京航空航天大学学报 ›› 2017, Vol. 43 ›› Issue (7): 1470-1480.doi: 10.13700/j.bh.1001-5965.2016.0519

• 论文 • 上一篇    下一篇

基于核主成分分析的多输出模型确认方法

胡嘉蕊, 吕震宙   

  1. 西北工业大学 航空学院, 西安 710072
  • 收稿日期:2016-06-15 修回日期:2016-09-30 出版日期:2017-07-20 发布日期:2016-11-14
  • 通讯作者: 吕震宙,E-mail:zhenzhoulu@nwpu.edu.cn E-mail:zhenzhoulu@nwpu.edu.cn
  • 作者简介:胡嘉蕊 女,硕士研究生。主要研究方向:可靠性工程、模型确认;吕震宙 女,教授,博士生导师。主要研究方向:飞行器设计及可靠性工程。
  • 基金资助:
    国家自然科学基金(51475370);中央高校基本科研业务费专项资金(3102015BJ(Ⅱ)CG009)

Model validation method with multivariate output based on kernel principal component analysis

HU Jiarui, LYU Zhenzhou   

  1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2016-06-15 Revised:2016-09-30 Online:2017-07-20 Published:2016-11-14
  • Supported by:
    National Natural Science Foundation of China (51475370); the Fundamental Research Funds for the Central Universities (3102015BJ (Ⅱ) CG009)

摘要: 目前对于不确定性环境下多个相关的复杂计算模型进行确认的方法存在计算困难及稳定性较差的问题。针对这类复杂计算模型,提出了一种新的基于核主成分分析(KPCA)的多输出模型确认方法。该方法将核主成分分析与面积法的思想相结合,构造了一个新的易于计算且稳定性高的模型确认指标。所提方法通过核主成分分析将相关的输出变量转化为不相关的核主成分,再对每一核主成分进行模型与实验的对比,从而避免了传统多输出模型确认方法中需要求解多个输出的联合累积分布函数的困难。由于核主成分分析(PCA)方法能够有效提取分析对象的非线性成分,因此基于核主成分分析的多输出模型确认方法较基于主成分分析的模型确认方法更为稳定,这表现在相同的实验样本数据下核主成分分析的方法具有更低的出错率。另外核主成分分析通过核主成分提取,可以实现多输出模型的降维,从而降低多输出模型确认的复杂度。所提方法既可以用于一般的多输出模型的确认,也可以用于多确认点的输出模型的确认。最后通过数值算例和工程算例证明了该方法的正确性与有效性。

关键词: 模型确认, 多输出, 相关性, 核主成分分析(KPCA), 面积指标

Abstract: At present, for the multiple correlated complex computational models with uncertainty, the traditional validation methods still have some problems, such as difficult calculation and poor stability.Aimed at such complex computational models, a new multivariate model validation method is proposed based on kernel principal component analysis (KPCA). By combining the KPCA with the idea of area metric, the proposed method constructs a new model validation metric which is easy to be calculated and has high stability. In proposed method, the correlated multivariate output variables are transformed into uncorrelated kernel principal component by the KPCA, and then for each kernel principal component, the computational model is compared with the experiment. Thus this method avoids the difficulties of solving the joint cumulative distribution function of multivariate output in the traditional methods. Because the KPCA can effectively extract the nonlinear characteristic of the analyzed model, the multivariate output model validation method based on the KPCA is more robust than that based on the principal component analysis (PCA). Under the same experiment sample data, the method based on the KPCA has a lower error rate than that based on PCA. Furthermore, by extracting the kernel principal component,dimensionality reduction of the multivariate output can be implemented; thereby the complexity of the multivariate output validation can also be reduced. The proposed method can be applied not only to the general multivariate output model validation, but also to the model validation with multiple validation sites. Finally, the correctness and effectiveness of the proposed method are demonstrated by the numerical and engineering examples.

Key words: model validation, multivariate output, correlation, kernel principal component analysis (KPCA), area metric

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发