留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机翼后缘连续变弯度对客机气动特性影响

郭同彪 白俊强 杨一雄

郭同彪, 白俊强, 杨一雄等 . 机翼后缘连续变弯度对客机气动特性影响[J]. 北京航空航天大学学报, 2017, 43(8): 1559-1566. doi: 10.13700/j.bh.1001-5965.2016.0583
引用本文: 郭同彪, 白俊强, 杨一雄等 . 机翼后缘连续变弯度对客机气动特性影响[J]. 北京航空航天大学学报, 2017, 43(8): 1559-1566. doi: 10.13700/j.bh.1001-5965.2016.0583
GUO Tongbiao, BAI Junqiang, YANG Yixionget al. Influence of continuous trailing-edge variable camber wing on aerodynamic characteristics of airliner[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1559-1566. doi: 10.13700/j.bh.1001-5965.2016.0583(in Chinese)
Citation: GUO Tongbiao, BAI Junqiang, YANG Yixionget al. Influence of continuous trailing-edge variable camber wing on aerodynamic characteristics of airliner[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1559-1566. doi: 10.13700/j.bh.1001-5965.2016.0583(in Chinese)

机翼后缘连续变弯度对客机气动特性影响

doi: 10.13700/j.bh.1001-5965.2016.0583
基金项目: 

国家"973"计划 2014CB744800

详细信息
    作者简介:

    郭同彪   男, 博士研究生。主要研究方向:飞行器气动优化设计、气动弹性分析

    白俊强  男, 博士, 教授, 博士生导师。主要研究方向:飞行器气动优化设计、飞行器综合应用研究、计算流体力学

    通讯作者:

    白俊强, E-mail: junqiang@nwpu.edu.cn

  • 中图分类号: V211.41+1

Influence of continuous trailing-edge variable camber wing on aerodynamic characteristics of airliner

Funds: 

National Basic Research Program of China 2014CB744800

More Information
  • 摘要:

    后缘连续变弯度机翼在提高民用客机气动特性方面有较大的潜力,近年来被广泛关注。基于建立的全局优化设计系统,研究了机翼后缘连续变弯度对宽体客机翼身组合体气动特性的影响。首先,采用自由型面变形(FFD)技术建立了后缘连续变弯度的参数化方法。然后,采用RANS方程作为流场评估方法,针对翼身组合体构型设计点附近升力系数开展了机翼后缘连续变弯度气动减阻优化设计。最后,探索了仅外翼段后缘连续变弯度和内外翼后缘均连续变弯度优化设计结果的异同。优化结果表明,升力系数小于设计升力系数时,在只考虑外翼段后缘连续变弯度的设计中,不易实现激波阻力和诱导阻力同时降低,考虑内翼段后缘连续变弯度后,减阻量较前者更为明显;升力系数大于设计升力系数时,外翼段和内外翼的后缘偏转均可实现诱导阻力和激波阻力的同时降低,且减阻量相差不大。

     

  • 图 1  机翼后缘偏转的FFD控制体

    Figure 1.  FFD control framework for trailing-edge deflection of wing

    图 2  机翼控制截面处FFD控制体的放大图

    Figure 2.  Amplification of FFD control framework at certain wing control section

    图 3  本文方法计算的剖面压力系数分布与试验结果对比

    Figure 3.  Comparison of section pressure coefficient distribution between calculation of proposed method and test results

    图 4  优化设计系统的优化流程图

    Figure 4.  Optimization flowchart of optimization design system

    图 5  初始翼身组合体构型巡航点的表面压力系数云图

    Figure 5.  Surface pressure coefficient contours of original wing-body configuration under cruise condition

    图 6  优化后各控制剖面翼型后缘偏转角度

    Figure 6.  Trailing-edge deflection degrees of each control section airfoils after optimization

    图 7  优化前后控制剖面压力系数分布对比(CL=0.45)

    Figure 7.  Comparison of control section pressure coefficient distribution before and after optimization (CL=0.45)

    图 8  优化前后机翼展向升力系数分布(CL=0.45)

    Figure 8.  Spanwise lift coefficient distribution of wing before and after optimization (CL=0.45)

    图 9  优化前后控制剖面压力系数分布对比(CL=0.55)

    Figure 9.  Comparison of control section pressure coefficient distribution before and after optimization (CL=0.55)

    图 10  优化前后机翼展向升力系数分布(CL=0.55)

    Figure 10.  Spanwise lift coefficient distribution of wing before and after optimization (CL=0.55)

    图 11  初始和Optimized_1构型的Section 5剖面翼型对比(CL=0.45)

    Figure 11.  Comparison of Section 5 airfoil between Original and Optimized_1 configurations (CL=0.45)

    图 12  初始和Optimized_1的Section 5展向位置处,马赫数大于1的空间分布云图对比(CL=0.45)

    Figure 12.  Comparison of Mach number (exceeding 1) spatial distribution contour of spanwise direction of Section 5 between Original and Optimized_1 configurations (CL=0.45)

    表  1  优化前后气动特性对比

    Table  1.   Comparison of aerodynamic performance before and after optimization

    构型CL=0.45CL=0.55
    α/(°)CDα/(°)CD
    Original1.120.018 841.710.023 03
    Optimized_11.250.018 631.570.022 81
    Optimized_21.470.018 571.590.022 78
    下载: 导出CSV
  • [1] RENEAUX J.Overview on drag reduction technologies for civil transport aircraft[C]//European Congress on Computational Methods in Applied Sciences and Engineering.Jyväskylä:University of Jyväskylä, 2004:7-24.
    [2] BRUNET M, LAFAGE R, AUBRY S, et al.The clean sky programme:Environmental benefits at aircraft level[C]//15th AIAA Aviation Technology, Integration, and Operations Conference.Reston:AIAA, 2015:6-22.
    [3] 陈迎春.C919飞机空气动力设计[J].航空科学技术, 2012(5):10-13. http://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201205006.htm

    CHEN Y C.C919 aircraft aerodynamic design[J].Aeronautical Science & Technology, 2012(5):10-13(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201205006.htm
    [4] URNES J, NGUYEN N, IPPOLITO C, et al.A mission adaptive variable camber flap control system to optimize high lift and cruise lift-to-drag ratios of future n+3 transport aircraft[C]//51th AIAA Aerospace Sciences Meeting.Reston:AIAA, 2013:1-7.
    [5] KOTA S.Shape control of adaptive structures using compliant mechanisms:AFRLSR-BL-TR-00-0125[R].Ann Arbor:Department of Mechanical Engineering and Applied Mechanics, 2000.
    [6] KERR-JIA L, KOTA S.Design of compliant mechanisms for morphing stricture shapes[J].Journal of Intelligent Material Systems and Structures, 2003, 14(6):279-391.
    [7] MARQUES M, GAMBOA P, ANDRADE E.Design of a variable camber flap for minimum drag and improved energy efficiency[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2009:1-19.
    [8] DE GASPARI A, RICCI S, ANTUNES A, et al.Application of active camber morphing concept to a regional aircraft[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference.Reston:AIAA, 2014:1-13.
    [9] YOKOZEKI T, SUGIURA A.Development and wind tunnel test of variable camber morphing wing:AIAA-2014-1261[R].Reston:AIAA, 2014.
    [10] KAUL U K, NGUYEN N T.Drag optimization study of variable camber continuous trailing edge flap using overflow:AIAA-2014-2444[R].Reston:AIAA, 2014.
    [11] LYU Z J, MARTINS J R R A.Aerodynamic shape optimization of an adaptive morphing trailing-edge wing[J].Journal of Aircraft, 2015, 52(6):1951-1970. doi: 10.2514/1.C033116
    [12] 王婷, 王帮峰, 芦吉云, 等.一种拓扑优化方法在机翼可变后缘中的研究[J].机械科学与技术, 2011, 30(1):1660-1663. http://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201110014.htm

    WANG T, WANG B F, LU J Y, et al.The study of a topological optimization method on the adaptive wing's trailing edge[J].Mechanical Science and Technology for Aerospace Engineering, 2011, 30(1):1660-1663(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201110014.htm
    [13] 尹维龙, 石庆华, 田冬奎.变体后缘的索网传动机构设计与分析[J].航空学报, 2013, 34(8):1824-1831. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308009.htm

    YIN W L, SHI Q H, TIAN D K.Design and analysis of transmission mechanism with cable networks for morphing trailing edge[J].Acta Aeronoutica et Astronautica Sinica, 2013, 34(8):1824-1831(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308009.htm
    [14] 陈钱, 白鹏, 尹维龙, 等.可连续光滑偏转后缘的变弯度翼型气动特性分析[J].空气动力学报, 2010, 28(1):46-53. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201001006.htm

    CHEN Q, BAI P, YIN W L, et al.Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J].Acta Aerodynamica Sinica, 2010, 28(1):46-53(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201001006.htm
    [15] 郭同彪, 白俊强, 杨体浩.后缘连续变弯对跨音速翼型气动特性影响研究[J].航空学报, 2016, 37(2):513-521.

    GUO T B, BAI J Q, YANG T H.The influence investigation of continuous trailing-edge variable camber on the aerodynamic characteristics of transonic airfoils[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(2):513-521(in Chinese).
    [16] 梁煜, 单肖文.大型民机翼型变弯度气动特性分析与优化设计[J].航空学报, 2016, 37(3):790-798. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201603005.htm

    LIANG Y, SHAN X W.Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(3):790-798(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201603005.htm
    [17] SEDERBERG T W, PARRY S R.Free-form deformation of solid geometric models[J].Computer Graphics, 1986, 20(4):151-160. doi: 10.1145/15886
    [18] JOHNSON F T, TINOCO E N, YU N J.Thirty years of development and application of CFD at Boeing commercial airplanes, seattle[J].Computers & Fluids, 2005, 34(10):1115-1151. http://calmarresearch.com/NF/STG/AGPS/media/aiaa-2003-3439.pdf
    [19] LEVY D W, LAFLIN K R, TINOCO E N, et al.Summary of data from the fifth computational fluid dynamics drag prediction workshop[J].Journal of Aircraft, 2014, 51(4):1194-1213. doi: 10.2514/1.C032389
    [20] BOER A D, SCHOOT V D, BIJL H.Mesh deformation based on radial basis function interpolation[J].Computers & Structures, 2007, 85(11-14):784-795. https://www.deepdyve.com/lp/elsevier/efficient-mesh-deformation-based-on-radial-basis-function-cHlCdtuHx1
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  855
  • HTML全文浏览量:  97
  • PDF下载量:  542
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-07
  • 录用日期:  2016-09-02
  • 网络出版日期:  2017-08-20

目录

    /

    返回文章
    返回
    常见问答