留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大攻角状态压气机分离流及叶片动力响应特性

倪奇峰 侯安平 刘若阳 周拜豪 张明明

倪奇峰, 侯安平, 刘若阳, 等 . 大攻角状态压气机分离流及叶片动力响应特性[J]. 北京航空航天大学学报, 2017, 43(7): 1410-1418. doi: 10.13700/j.bh.1001-5965.2016.0912
引用本文: 倪奇峰, 侯安平, 刘若阳, 等 . 大攻角状态压气机分离流及叶片动力响应特性[J]. 北京航空航天大学学报, 2017, 43(7): 1410-1418. doi: 10.13700/j.bh.1001-5965.2016.0912
NI Qifeng, HOU Anping, LIU Ruoyang, et al. Separation flow and blade dynamic response characteristic of compressor at high attack angle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1410-1418. doi: 10.13700/j.bh.1001-5965.2016.0912(in Chinese)
Citation: NI Qifeng, HOU Anping, LIU Ruoyang, et al. Separation flow and blade dynamic response characteristic of compressor at high attack angle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1410-1418. doi: 10.13700/j.bh.1001-5965.2016.0912(in Chinese)

大攻角状态压气机分离流及叶片动力响应特性

doi: 10.13700/j.bh.1001-5965.2016.0912
基金项目: 

国家自然科学基金 11290140

详细信息
    作者简介:

    倪奇峰  男, 博士研究生。主要研究方向:叶轮机气动设计、非定常流动及气动弹性

    侯安平  男, 博士, 副教授, 博士生导师。主要研究方向:叶轮机气动设计、空气轴承及高速电机设计、非定常流动及气动弹性

    通讯作者:

    侯安平, E-mail:houap@buaa.edu.cn

  • 中图分类号: V231.3

Separation flow and blade dynamic response characteristic of compressor at high attack angle

Funds: 

National Natural Science Foundation of China 11290140

More Information
  • 摘要:

    为研究大攻角状态压气机转子内部分离区的脱落和传播过程及转子叶片对其动力响应问题,对某跨声速压气机级进行了非定常数值模拟和双向迭代流固耦合数值模拟。研究结果表明,在近失速状态,转子叶片通道内会周期性地发生2次叶背分离区的脱落和传播现象。第1个分离区主要表现出轴向传播特性,其会对下游流场产生影响;第2个分离区主要表现出周向传播特性,其会作用于周向相邻的转子叶片,对转子叶排自身产生激励作用,进而影响叶片表面压力分布,引起叶片较强的动力响应,对叶片结构强度的影响不可忽略。非定常/流固耦合计算手段能够较全面地预测流场中激励源的频率、幅值与位置等,在压气机设计阶段应对此类预测工作予以重视,以期更准确地预测叶片共振及动力响应等问题。

     

  • 图 1  压气机计算模型与计算网格

    Figure 1.  Computational model and mesh of compressor

    图 2  流体网格无关性分析

    Figure 2.  Fluid mesh independence analysis

    图 3  时间步长无关性分析

    Figure 3.  Time step independence analysis

    图 4  90%叶高位置的相对马赫数分布云图

    Figure 4.  Relative Mach number distribution contour at 90% spanwise location

    图 5  监测点相对马赫数时域脉动与频谱分析

    Figure 5.  Relative Mach number time domain fluctuation and frequency spectrum analysis at monitoring point

    图 6  不同非定常时刻的相对马赫数分布云图

    Figure 6.  Relative Mach number distribution contours at different unsteady time points

    图 7  不同非定常时刻的气流角变化

    Figure 7.  Variation of flow angle at different unsteady time points

    图 8  不同非定常时刻叶片叶盆面的压力云图

    Figure 8.  Pressure contour of pressure side of blade at different unsteady time points

    图 9  90%叶高位置的叶片表面压力分布

    Figure 9.  Blade surface pressure distribution at 90% spanwise location

    图 10  转子叶片气动力随时间的变化

    Figure 10.  Variation of aerodynamic force of rotor blade with time

    图 11  叶片振动时域曲线

    Figure 11.  Blade vibration time domain curves

    图 12  叶片振动位移云图

    Figure 12.  Blade vibration displacement contours

    图 13  叶片振动频谱图

    Figure 13.  Frequency spectrum analysis of blade vibration

    表  1  转子叶片材料属性

    Table  1.   Material property of rotor blades

    参数 弹性模量/GPa 泊松比 密度/(kg·m-3)
    数值 120 0.32 4370
    下载: 导出CSV

    表  2  叶片固有频率与振型

    Table  2.   Natural frequency and vibration mode of blade

    阶数 固有频率/Hz 振型
    1 1840
    2 3011
    3 4865
    4 5341
    下载: 导出CSV
  • [1] 夏联, 崔健, 顾扬.可调静叶对压气机低速性能影响的试验研究[J].燃气涡轮试验与研究, 2005, 18(1):31-34. http://www.cnki.com.cn/Article/CJFDTOTAL-RQWL200501006.htm

    XIA L, CUI J, GU Y.An experimental investigation on the effect of variable stator vane angle on compressor performance at low speed[J]. Gas Tirbine Experiment and Reasearch, 2005, 18(1):31-34(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-RQWL200501006.htm
    [2] VALKOV T V, TAN C S.Effect of upstream rotor vortical disturbances on the time-averaged performance of axial compressor stator.Part 2:Rotor tip vortex/streamwise vortex-stator blade interactions[J]. Journal of Turbomachinery, 1999, 121(3):387-397. doi: 10.1115/1.2841331
    [3] GBADEBO S A, CUMPSTY N A, HYNES T P.Three-dimensional separations in axial compressors[J]. Journal of Turbomachinery, 2005, 127(2):331-339. doi: 10.1115/1.1811093
    [4] MAILACH R, LEHMANN I, VOGELER K.Periodical unsteady flow within a rotor blade row of an axial compressor.Part 2:Wake-tip clearance vortex interaction[J]. Journal of Turbomachinery, 2008, 130(4):041005. doi: 10.1115/1.2812330
    [5] HAH C, BERGNER J, SCHIFFER H P.Tip clearance vortex oscillation, vortex shedding and rotating instabilities in an axial transonic compressor rotor[C]//ASME Turbo Expo 2008.New York:ASME, 2008:57-65.
    [6] KIELB R E, BARTWE J W, THOMAS J P, et al.Blade excitation by aerodynamic instabilities—A compressor blade study[C]//ASME Turbo Expo 2003.New York:ASME, 2003:399-406.
    [7] MAILACH R, VOGELER K.Unsteady aerodynamic blade excitation at the stability limit and during rotating stall in an axial compressor[C]//ASME Turbo Expo 2006.New York:ASME, 2006:1701-1711.
    [8] HOLZINGER F, WARTZEK F, JUNGST M, et al.Self-excited blade vibration experimentally investigated in transonic compressors:Rotating instabilities and flutter[J]. Journal of Turbomachinery, 2015, 138(4):041006-1-041006-9.
    [9] 张章. 风扇/压气机气动弹性动力响应的机理与应用研究[D]. 北京: 北京航空航天大学, 2013.

    ZHANG Z.Investigation on the mechanism and application of aeroelastic dynamic respones in fan/compressor[D]. Beijing:Beihang University, 2013(in Chinese).
    [10] 张明明. 轴流压气机气动弹性失稳机理研究[D]. 北京: 北京航空航天大学, 2012.

    ZHANG M M.Investigation on the mechanism of aeroelasticity instability in axial compressor[D]. Beijing:Beihang University, 2012(in Chinese).
    [11] YANG X D.Flow field and vibration behavior of the rotor due to mistuning IGV in a transonic compressor[C]//Proceeding of ASME 2012 International Mechanical Engineering Congress & Exposition.New York:ASME, 2012:267-274.
    [12] ZHANG M M, HOU A P, LI J X, et al.Analysis of blade vibration response induced by rotating stall in axial compressor[J]. Journal of Aerospace Power, 2012, 27(10):2269-2277.
    [13] 杜鹃. 跨音压气机/风扇转子叶顶泄漏流动的非定常机制研究[D]. 北京: 中国科学院工程热物理研究所, 2010.

    DU J.Investigation on the unsteady mechanism of tip leakage flow in transonic compressor/fan rotors[D]. Beijing:Institute of Engineering Thermalphysics, Chinese Academy of Sciences, 2010(in Chinese).
    [14] BOHNE A, NIEHUIS R.Experimental off-design investigation of unsteady secondary flow phenomena in a three stage axial compressor at 68% nominal speed[C]//ASME Turbo Expo 2004.New York:ASME, 2004:857-866.
    [15] MAILACH R, LEHMANN I, VOGELER K.Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[J]. Journal of Turbomachinery, 2000, 123 (3):453-463. http://turbomachinery.asmedigitalcollection.asme.org/article.aspx?articleid=1466156
    [16] LEE S, RUNEHAL A K, KIM H J, et al.Large eddy simulation of unsteady flows in turbomachinery[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2006, 218(7):463-475. http://www.irgrid.ac.cn/handle/1471x/699365
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  559
  • HTML全文浏览量:  34
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-02
  • 录用日期:  2017-01-13
  • 网络出版日期:  2017-07-20

目录

    /

    返回文章
    返回
    常见问答