[1] ABDELLAOUI M,LUCE R D,MACHINA M J,et al.Uncertainty and risk:Mental,formal,experimental representations[M/OL].Berlin:Springer-Verlag,2007:5-98[2017-09-30].http://www.springer.com/us/book/9783540489344.
[2] HELTON J C,JOHNSON J D,OBERKAMPF W L,et al.Representation of analysis results involving aleatory and epistemic uncertainty[J].International Journal of General Systems,2010,39(6):605-646.
[3] HELTON J C.Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty[J].Journal of Statistical Computation and Simulation,1997,57(1-4):3-76.
[4] GUYONNET D,BOURGINE B,DUBOIS D,et al.Hybrid approach for addressing uncertainty in risk assessments[J].Journal of Environmental Engineering,2003,129(1):68-78.
[5] MOENS D,HANSS M.Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics:Recent advances[J].Finite Elements in Analysis & Design,2011,47(1):4-16.
[6] ROHMER J,BAUDRIT C.The use of the possibility theory to investigate the epistemic uncertainties within scenario-based earthquake risk assessments[J].Natural Hazards,2011,56(3):613-632.
[7] AGARWAL H,RENAUD J E,PRESTON E L,et al.Uncertainty quantification using evidence theory in multidisciplinary design optimization[J].Reliability Engineering & System Safety,2004,85(1):281-294.
[8] SHAH H,HOSDER S,WINTER T.Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions[J].Reliability Engineering & System Safety,2015,138:59-72.
[9] RAO K D,GOPIKA V,RAO V V S S,et al.Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment[J].Reliability Engineering & System Safety,2009,94(4):872-883.
[10] BARALDI P,ZIO E.A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis[J].Risk Analysis,2008,28(5):1309-1326.
[11] BAUDRIT C,DUBOIS D,GUYONNET D.Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment[J].IEEE Transactions on Fuzzy Systems,2006,14(5):593-608.
[12] DEMPSTER A P.Upper and lower probabilities induced by a multivalued mapping[J].Annals of Mathematical Statistics,1967,38(2):325-339.
[13] SHAFER G.A mathematical theory of evidence[J].Technometrics,1978,20(1):579-601.
[14] KAY R U.Fundamentals of the Dempster-Shafer theory and its applications to system safety and reliability modelling[J].Reliability:Theory & Applications,2007,2:173-185.
[15] GUAN J W,BELL D A.Evidence theory and its applications.Vol.2[M].New York:Elsevier Science,1991:37-53.
[16] SADIQ R,NAJJARAN H,KLEINER Y.Investigating evidential reasoning for the interpretation of microbial water quality in a distribution network[J].Stochastic Environmental Research and Risk Assessment,2006,21(1):63-73.
[17] GRABISCH M.Dempster-Shafer and possibility theory[M].Berlin:Springer,2016:377-437.
[18] DUBOIS D,NGUYEN H T,PRADE H.Possibility theory,probability and fuzzy sets misunderstandings,bridges and gaps[M]//DUBOIS D,PRADE H.Fundamentals of fuzzy sets.Berlin:Springer,2000:343-438.
[19] ROSS T J.Fuzzy logic with engineering applications[M].New York:John Wiley & Sons,2009:408-433.
[20] DUBOIS D.Fuzzy sets and systems:Theory and applications[M].Orlando:Academic Press,1980:9-146.
[21] DUBOIS D.Possibility theory and statistical reasoning[J].Computational Statistics & Data Analysis,2006,51(1):47-69.
[22] PEDRONI N,ZIO E.Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment,in presence of dependences[J].International Journal of Uncertainty,Fuzziness and Knowledge-based Systems,2012,20(4):509-557.
[23] 王荣宗,孙天辉.低温贮箱共底真空性能分析及测试[J].导弹与航天运载技术,2002(2):47-51.WANG R Z,SUN T H.Analysis and measure of vacuum character for the co-bulkhead of the cryogenic tanks[J].Missiles and Space Vehicles,2002(2):47-51(in Chinese).
[24] VOSE D.Risk analysis:A quantitative guide[M].New York:John Wiley & Sons,2007:52-158. |