[1] AHMED N K,NEVILLE J,KOMPELLA R.Network sampling:From static to streaming graphs[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2014,8(2):7:1-7:56.
[2] EBERLE W,HOLDER L.Anomaly detection in data represented as graphs[J].Intelligent Data Analysis,2007,11(6):663-689.
[3] EBERLE W,HOLDER L,GRAVES J.Insider threat detection using a graph-based approach[J].Journal of Applied Security Research,2011,6(1):32-81.
[4] NOBLE C C,COOK D J.Graph-based anomaly detection[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2003:631-636.
[5] AKOGLU L,MCGLHON M,FALOUSTSOS C.OddBall:Spotting anomalies in weighted graphs[C]//Proceedings of the 14th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining.Berlin:Springer-Verlag,2010,3:410-421.
[6] FEIGENBAUM J,KANNAN S,MCGREGOR A,et al.On graph problems in a semi-streaming model[J].Theoretical Computer Science,2005,348(2-3):207-216.
[7] DEMETRESCU C,FINOCCHI I,RIBICHINI A.Trading off space for passes in graph streaming problems[J].ACM Transactions on Algorithms(TALG),2009,6(1):6:1-6:17.
[8] AGGARWAL G,DATAR M,RAJAGOPALAN S,et al.On the streaming model augmented with a sorting primitive[C]//Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science(FOCS).Washington,D.C.:IEEE Computer Society,2004:540-549.
[9] SARMA A,GOLLAPUDI S,PANIGRAHY R.Estimating PageRank on graph streams[C]//Proceedings of the 27th ACM Sigmod-Sigact-Sigart Symposium on Principles of Database Systems.New York:ACM Press,2008:69-78.
[10] SHIN K,ELIASSI-RAD T,FALOUTSOS C.CoreScope:Graph mining using k-core analysis-Patterns,anomalies and algorithms[C]//2016 IEEE 16th International Conference on Data Mining (ICDM).Washington,D.C.:IEEE Computer Society,2017:469-478.
[11] BRIDGES R A,COLLINS J P,FERRAGUT E M,et al.Multi-level anomaly detection on time-varying graph data[C]//2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).New York:ACM Press,2016:579-583.
[12] EBERLE W,HOLDER L.A partitioning approach to scaling anomaly detection in graph streams[C]//2014 IEEE International Conference on Big Data.Washington,D.C.:IEEE Computer Society,2014:17-24.
[13] AKOGLU L,TONG H,KOUTRA D.Graph based anomaly detection and description:A survey[J].Data Mining and Knowledge Discovery,2015,29(3):626-688.
[14] 吴烨,钟志农,熊伟,等.一种高效的属性图聚类算法[J].计算机学报,2013,36(8):1704-1713.WU Y,ZHONG Z N,XIONG W,et al.An efficient method for attributed graph clustering[J].Chinese Journal of Computers,2013,36(8):1704-1713(in Chinese).
[15] EBERLE W,HOLDER L.Incremental anomaly detection in graphs[C]//2013 IEEE 13th International Conference on Data Mining Workshops.Washington,D.C.:IEEE Computer Society,2013:521-528.
[16] EPASTO A,LATTANZI S,SOZIO M.Efficient densest subgraph computation in evolving graphs[C]//Proceedings of the 24th International Conference on World Wide Web.Geneva:International World Wide Web Conferences Steering Committee,2015:300-310.
[17] YANG J,LESKOVEC J.Defining and evaluating network communities based on ground-truth[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.New York:ACM Press,2012,3:1-3:8. |