留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚焦光场成像三维粒子场重建方法

曹丽霞 张彪 宋祥磊 许传龙 王式民

曹丽霞, 张彪, 宋祥磊, 等 . 聚焦光场成像三维粒子场重建方法[J]. 北京航空航天大学学报, 2017, 43(11): 2322-2330. doi: 10.13700/j.bh.1001-5965.2017.0068
引用本文: 曹丽霞, 张彪, 宋祥磊, 等 . 聚焦光场成像三维粒子场重建方法[J]. 北京航空航天大学学报, 2017, 43(11): 2322-2330. doi: 10.13700/j.bh.1001-5965.2017.0068
CAO Lixia, ZHANG Biao, SONG Xianglei, et al. Reconstruction method of three-dimensional particle field based on focused light field imaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2322-2330. doi: 10.13700/j.bh.1001-5965.2017.0068(in Chinese)
Citation: CAO Lixia, ZHANG Biao, SONG Xianglei, et al. Reconstruction method of three-dimensional particle field based on focused light field imaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2322-2330. doi: 10.13700/j.bh.1001-5965.2017.0068(in Chinese)

聚焦光场成像三维粒子场重建方法

doi: 10.13700/j.bh.1001-5965.2017.0068
基金项目: 

国家自然科学基金 51676044

国家自然科学基金 51506030

国家自然科学基金 51327803

江苏省自然科学基金杰出青年基金 BK20150023

详细信息
    作者简介:

    曹丽霞  女, 博士研究生。主要研究方向:层析成像及流体可视化

    王式民:许传龙  男, 博士, 教授, 博士生导师。主要研究方向:多相流测试、燃烧诊断技术

    通讯作者:

    许传龙, E-mail: chuanlongxu@seu.edu.cn

  • 中图分类号: O359

Reconstruction method of three-dimensional particle field based on focused light field imaging

Funds: 

National Natural Science Foundation of China 51676044

National Natural Science Foundation of China 51506030

National Natural Science Foundation of China 51327803

Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars BK20150023

More Information
  • 摘要:

    层析重建是层析粒子图像测速(Tomo-PIV)技术实现三维粒子位置和强度信息(三维粒子场)重构的核心步骤。相比于多相机的Tomo-PIV技术,单聚焦光场相机通过一次成像能够同时采集示踪粒子的散射光的方向和位置信息。因此,提出一种单聚焦光场相机的层析重建技术用于重构流场中的三维粒子场信息。为了验证本文方法的可行性及准确性,利用几何光学建立了示踪粒子的光场成像模型,利用光线追迹技术计算了粒子在聚焦光场相机中的成像,对比了被测流场中位于不同深度位置的粒子在聚焦光场相机中的成像差异;建立了基于单聚焦光场相机的层析重建数学模型,利用乘法代数重构技术(MART)对模拟所得的光场图像进行反演计算,实现了三维粒子场的重构,并利用归一化互相关系数来表征粒子的重建质量。结果表明,单个粒子在Z轴方向上的位置精度为±0.35 mm,初步证明了基于聚焦光场成像理论的三维粒子场重建方法的可行性。

     

  • 图 1  聚焦光场相机结构示意图

    Figure 1.  Schematic of structure of focused light field camera

    图 2  聚焦光场相机的坐标及参数定义

    Figure 2.  Coordinate and parameter definition of focused light field camera

    图 3  空间光线的表征

    Figure 3.  Characterization of ray of light in space

    图 4  单粒子的光线追迹示意图

    Figure 4.  Schematic of ray tracing of a single particle

    图 5  单粒子成像示意图

    Figure 5.  Schematic of imaging of a single particle

    图 6  多粒子成像示意图

    Figure 6.  Schematic of imaging of multiple particles

    图 7  基于聚焦光场相机的层析重建原理

    Figure 7.  Theory of tomographic reconstruction based on focused light field camera

    图 8  单粒子场理论分布

    Figure 8.  Theoretical distribution of a single particle field

    图 9  单粒子重建结果

    Figure 9.  Reconstruction results of a single particle

    图 10  单粒子位置坐标重建结果

    Figure 10.  Reconstruction results of position coordinate of a single particle

    图 11  归一化互相关系数

    Figure 11.  Normalized correlation coefficient

    图 12  多粒子重建结果

    Figure 12.  Reconstruction results of multiple particles

    表  1  聚焦光场相机参数

    Table  1.   Parameters of focused light field camera

    参数 数值/mm
    主透镜焦距f 100
    主透镜与微透镜的距离l1 147.425
    虚拟物面B1与主透镜的距离l2 300
    虚拟物面B2与主透镜的距离l3 296.916
    虚拟物面B3与主透镜的距离l4 290.164
    微透镜与CCD的距离d1 0.592
    微透镜与虚拟像面I1的距离d2 2.575
    微透镜与虚拟像面I2的距离d3 3.358 1
    微透镜与虚拟像面I3的距离d4 5.161 3
    主透镜的入瞳直径Pl 32.7
    微透镜直径Pm 0.170 5
    微透镜焦距f1, f2, f3 0.768 7, 0.718 7, 0.668 7
    像元尺寸Pp 5.5×10-3
    下载: 导出CSV
  • [1] COGOTTI A.Evolution of performance of an automotive wind tunnel[J].Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6):667-700. http://linkinghub.elsevier.com/retrieve/pii/S0167610507001249
    [2] TOKAREV M P, SHARABORIN D K, LOBASOV A S, et al.3D velocity measurements in a premixed flame by tomographic PIV[J].Measurement Science & Technology, 2015, 26(6):1-13. doi: 10.1088/0957-0233/26/6/064001/meta
    [3] PARK H, YEOM E, LEE S J.X-ray PIV measurement of blood flow in deep vessels of a rat:An in vivo feasibility study[J].Scientific Reports, 2016, 6:1-8. doi: 10.1038/s41598-016-0001-8
    [4] FILATOV N A, BELOUSOV K I, BUKATIN A S, et al.The study of mixing of reagents within a droplet in various designs of microfluidic chip[J].Journal of Physics:Conference Series, 2016, 741(1):1-6. http://stacks.iop.org/1742-6596/741/i=1/a=012052?key=crossref.0bded033d07ca5e8d2b11caba23e67b2
    [5] GAO Q, WANG H P, SHEN G X.Review on development of volumetric particle image velocimetry[J].Science Bulletin, 2013, 58(36):4541-4556. doi: 10.1007/s11434-013-6081-y
    [6] ELSINGA G E, SCARANO F, WIENEKE B, et al.Tomographic particle image velocimetry[J].Experiments in Fluids, 2006, 41(6):933-947. doi: 10.1007/s00348-006-0212-z
    [7] ATKINSON C H, SORIA J.Algebraic reconstruction techniques for tomographic particle image velocimetry[C]//16th Australasian Fluid Mechanics Conference, 2007:191-198. https://www.researchgate.net/publication/43472385_Algebraic_Reconstruction_Techniques_for_Tomographic_Particle_Image_Velocimetry
    [8] ATKINSON C H, BUCHMANN N, STANISLAS M, et al.Adaptive MLOS-SMART improved accuracy tomographic PIV[C]//15th Sympoium on Applications of Laser Techniques to Fluid Mechanics, 2010:1-12. https://www.researchgate.net/publication/260085204_Adaptive_MLOS-SMART_improved_accuracy_tomographic_PIV
    [9] GAO Q, WANG H P, WANG J J.A single camera volumetric particle image velocimetry and its application[J].Science China Technological Sciences, 2012, 55(9):2501-2510. doi: 10.1007/s11431-012-4921-7
    [10] NG R, LEVOY M, BREDIF M, et al.Light field photography with a hand-held plenoptic camera[J].Computer Science Technical Report, 2005, 2(11):1-11. http://graphics.stanford.edu/papers/lfcamera/
    [11] FAHRINGER T, THUROW B S.Tomographic reconstruction of a 3-D flow field using a plenoptic camera[C]//42nd AIAA Fluid Dynamics Conference and Exhibit.Reston:AIAA, 2012:1-13. doi: 10.2514/6.2012-2826
    [12] SHI S X, WANG J H, DING J F, et al.Parametric study on light field volumetric particle image velocimetry[J].Flow Measurement and Instrumentation, 2016, 49:70-88. doi: 10.1016/j.flowmeasinst.2016.05.006
    [13] THUROW B S, FAHRINGER T.Recent development of volumetric PIV with a plenoptic camera[C]//10th International Symposium on Particle Image Velocimetry, 2013:1-7. http://repository.tudelft.nl/view/conferencepapers/uuid:087ebcbc-b6fd-4db5-9e66-684eca0db20f
    [14] GERSHUN A.The light field[J].Studies in Applied Mathematics, 1939, 18(1-4):51-151. doi: 10.1002/sapm193918151/abstract
    [15] ADELSON E H, WANG J Y A.Single lens stereo with a plenoptic camera[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 1992, 14(2):99-106. http://persci.mit.edu/pub_abstracts/plenoptic_abs.html
    [16] LUMSDAINE A, GEORGIEV T.Full resolution lightfield rendering[R].San Jose:Adobe Systems, Inc., Technical Report, 2008:1-12. http://www.researchgate.net/publication/228888002_Full_resolution_lightfield_rendering
    [17] GEORGIEV T, INTWALA C.Light field camera design for integral view photography[R].San Jose:Adobe System, Inc., Technical Report, 2006:1-13. https://www.researchgate.net/publication/242321329_Light_Field_Camera_Design_for_Integral_View_Photography
    [18] FAHRINGER T W, THUROW B S.3D particle position reconstruction accuracy in plenoptic PIV[C]//52nd Aerospace Sciences Meeting.Reston:AIAA, 2014:1-10. doi: 10.2514/6.2014-0398
    [19] BAO Q, JIANG N.A simplified 3D reconstruction technique for tomographic particle image velocimetry[J].Advanced Materials Research, 2013, 718:2184-2190. https://www.scientific.net/AMR.718-720.2184
    [20] LYNCH K, FAHRINGER T, THUROW B.Three-dimensional particle image velocimetry using a plenoptic camera[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston:AIAA, 2012:1-14. doi: 10.2514/6.2012-1056
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  722
  • HTML全文浏览量:  103
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-15
  • 录用日期:  2017-06-16
  • 网络出版日期:  2017-11-20

目录

    /

    返回文章
    返回
    常见问答