北京航空航天大学学报 ›› 2018, Vol. 44 ›› Issue (3): 636-644.doi: 10.13700/j.bh.1001-5965.2017.0148

• 论文 • 上一篇    下一篇

一种多运动模式下自适应阈值零速修正算法

张健敏, 修春娣, 杨威, 杨东凯   

  1. 北京航空航天大学电子信息工程学院, 北京 100083
  • 收稿日期:2017-03-14 出版日期:2018-03-20 发布日期:2018-03-30
  • 通讯作者: 修春娣 E-mail:xcd@buaa.edu.cn
  • 作者简介:张健敏,女,硕士研究生。主要研究方向:室内定位、模式识别;修春娣,女,博士,讲师,硕士生导师。主要研究方向:无线通信、室内定位。
  • 基金资助:
    北航北斗技术成果转化及产业化基金(BARI1701)

Adaptive threshold zero-velocity update algorithm under multi-movement patterns

ZHANG Jianmin, XIU Chundi, YANG Wei, YANG Dongkai   

  1. School of Electronic and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
  • Received:2017-03-14 Online:2018-03-20 Published:2018-03-30
  • Supported by:
    Beihang Beidou Technology Industrialization Funding Program (BARI1701)

摘要: 传统基于微机电惯性测量单元(MEMS-IMU)的惯性导航系统(INS)引入零速修正(ZUPT)算法校正器件的累积误差。但由于ZUPT算法零速判定阈值为固定值,只适合单一运动模式,当室内行人运动轨迹包含多种运动模式时,定位精度下降。对此,提出了一种多运动模式下自适应阈值ZUPT算法。分析了室内行人包括静止、走、跑、上楼和下楼5种运动模式零速判定阈值的选取,实现了利用随机森林(RF)算法对5种运动模式的分类识别,并根据识别结果对ZUPT算法零速判定阈值进行自适应调整。为了验证本文算法的可行性和有效性,利用MATLAB软件平台对实测数据进行处理,并与传统定位算法进行了比较。3组实验结果表明,当室内行人运动轨迹包括多种运动模式时,相比传统固定阈值的ZUPT算法,引入自适应调整阈值的ZUPT算法可使定位算法的定位精度提高73.83%。

关键词: 惯性导航系统(INS), 零速修正(ZUPT), 模式识别, 阈值选取, 自适应调整

Abstract: Zero-velocity update (ZUPT) algorithm is imported to calibrate device's cumulative error in traditional inertial navigation system (INS) which is based on micro-electro-mechanical system inertial mea-surement unit (MEMS-IMU). The positioning accuracy will be reduced when the movement trajectory of indoor pedestrian contains multi-movement patterns, because the zero-velocity determination threshold is fixed and only suitable for a single movement pattern. An adaptive threshold ZUPT algorithm under multi-movement patterns was proposed. The selection of zero-velocity determination threshold of indoor pedestrian's five movement patterns including Still, Walk, Run, Upstairs and Downstairs was analyzed. Classification and recognition of five movement patterns using random forest (RF) algorithm were realized. And the zero-velocity determination threshold of ZUPT was adaptively adjusted according to the recognition results. In order to verify the feasibility and validity of the algorithm, the test data was disposed and was compared with traditional position-ing algorithm through MATLAB software platform. The three groups of test results show that, when there are multiple movement patterns in an indoor pedestrian trajectory, the positioning accuracy of positioning algorithm can be improved by 73.83% when ZUPT algorithm with adaptively adjusted threshold is imported, compared with traditional positioning algorithm with fixed threshold.

Key words: inertial navigation system (INS), zero-velocity update (ZUPT), pattern recognition, threshold selection, adaptive adjustment

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发