[1] GEUZAINE P.Newton-Krylov strategy for compressible turbulent flows on unstructured meshes[J].AIAA Journal,2001,39(3):528-531.
[2] WONG J S,DARMOFAL D L,PERAIRE J.The solution of the compressible Euler equations at low mach numbers using a stabilized finite element algorithm[J].Computer Methods in Applied Mechanics and Engineering,2001,190(43-44):5719-5737.
[3] DENNIS J, SCHNABEL R.Numerical methods for unconstrained optimization and nonlinear equations[M].Philadelphia:Society for Industrial and Applied Mathematics,1996:116-126.
[4] MICHALAK C, OLLIVIER-GOOCH C.Globalized matrix-explicit Newton-GMRES for the high-order accurate solution of the euler equations[J].Computers & Fluids,2010,39(7):1156-1167.
[5] BROWN D A,ZINGG D W.Advances in homotopy continuation methods in computational fluid dynamics:AIAA-2013-2944[R].Reston:AIAA,2013.
[6] LYRA P R M,MORGAN K.A review and comparative study of upwind biased schemes for compressible flow computation.PartⅢ:Multidimensional extension on unstructured grids[J].Archives of Computational Methods in Engineering,2002,9(3):207-256.
[7] KUZMIN D,LOHNER R,TUREK S.Flux-corrected transport:Principles,algorithms,and applications[M].2nd ed.Berlin:Springer,2012:193-238.
[8] KUZMIN D,LOHNER R,TUREK S.Flux-corrected transport:Principles,algorithms,and applications[M].Berlin:Springer,2005:207-250.
[9] COFFEY T S,KELLEY C T,KEYES D E.Pseudotransient continuation and differential-algebraic equations[J].SIAM Journal on Scientific Computing,2003,25(2):553-569.
[10] KELLEY C T,LIAO L Z,QI L,et al.Projected pseudotransient continuation[J].SIAM Journal on Numerical Analysis,2008,46(6):3071-3083.
[11] CEZE M,FIDKOWSKI K J.A robust adaptive solution strategy for high-order implicit CFD solvers:AIAA-2011-3696[R].Reston:AIAA,2011.
[12] CEZE M,FIDKOWSKI K J.Constrained pseudo-transient continuation[J].International Journal for Numerical Methods in Engineering,2015,102(11):1683-1703.
[13] YOUNG D P,MELVIN R G,BIETERMAN M B,et al.Global convergence of inexact Newton methods for transonic flow[J].International Journal for Numerical Methods in Fluids,1990,11(8):1075-1095.
[14] HICKEN J,BUCKLEY H,OSUSKY M,et al.Dissipation-based continuation:A globalization for inexact-Newton solvers:AIAA-2011-3237[R].Reston:AIAA,2011.
[15] HICKEN J,ZINGG D.Globalization strategies for inexact-Newton solvers:AIAA-2009-4139[R].Reston:AIAA,2009.
[16] POLLOCK S.A regularized Newton-like method for nonlinear PDE[J].Numerical Functional Analysis and Optimization,2015,36(11):1493-1511.
[17] KNOLL D A,KEYES D E.Jacobian-free Newton-Krylov methods:A survey of approaches and applications[J].Journal of Computational Physics,2004,193(2):357-397.
[18] BLAZEK J.Computational fluid dynamics:Principles and applications[M].2nd ed. Oxford:Elsevier Science,2005:227-270.
[19] SPALART P R,ALLMARAS S R.A one-equatlon turbulence model for aerodynamic flows:AIAA-1992-0439[R].Reston:AIAA,1992.
[20] POLYANIN A D,NAZAIKINSKⅡ V E.Handbook of linear partial differential equations for engineers and scientists[M].2nd ed.Boca Raton:Chapman and Hall/CRC,2015:1199-1231.
[21] CEZE M,FIDKOWSKI K.Pseudo-transient continuation,solution update methods,and CFL strategies for DG discretizations of the RANS-SA equations:AIAA-2013-2686[R].Reston:AIAA,2013.
[22] MULDER W A,LEER B V.Experiments with implicit upwind methods for the euler equations[J].Journal of Computational Physics,1985,59(2):232-246.
[23] 张涵信.关于CFD高精度保真的数值模拟研究[J].空气动力学学报,2016,34(1):1-4.ZHANG H X.Investigation on fidelity of high order accuate numerical simulation for computational fluid dynamics[J].Acta Aerodynamica Sinica,2016,34(1):1-4(in Chinese).
[24] VASSBERG J,JAMESON A.In pursuit of grid convergence,Part I:Two-dimensional Euler solutions:AIAA-2009-4114[R].Reston:AIAA,2009.
[25] COOK P H, MCDONALD M A,FIRMIN M C P.Aerofoil RAE2822-Pressure distribution and boundary layer and wake measurements:AGARD-AR-138[R].Reston:AGARD,1979.
[26] SCHMITT V, CHARPIN F.Pressure distributions on the ONERA-M6-wing at transonic mach numbers:AGARD-AR-138[R].Reston:AGARD,1979. |