[1] KALMAN R E.A new approach to linear filtering and prediction theory[J].Transactions on ASME Journal of Basic Engineering,1960,82(D):35-46.
[2] JAZWINSKI A H.Stochastic processes and filtering theory[M].New York:Academic Press,1970:235-237.
[3] 李天成,范红旗.孙树栋.粒子滤波理论、方法及其在多目标跟踪中的应用[J].自动化学报,2015,41(12):1981-2002.LI T C,FAN H Q,SUN S D.Particle filtering:Theory,approach,and application for multitar-get tracking[J].Acta Automatica Sinica,2015,41(12):1981-2002(in Chinese).
[4] 韩萍,干浩亮,何炜琨,等.基于迭代中心差分卡尔曼滤波的飞机姿态估计[J].仪器仪表学报,2015,36(1):187-193.HAN P,GAN H L,HE W K,et al.Iterated central difference Kalman filter based aircraft attitude estimation[J].Chinese Journal of Scientific Instrument,2015,36(1):187-193(in Chinese).
[5] 王宝宝,吴盘龙. 基于平方根无迹卡尔曼滤波平滑算法的水下纯方位目标跟踪[J].中国惯性技术学报,2016,24(2):180-184.WANG B B,WU P L.Underwater bearing-only tracking based on square-root unscented Kalman filter smoothing algorithm[J].Journal of Chinese Inertial Technology,2016,24(2):180-184(in Chinese).
[6] 张龙,崔乃刚,杨峰,等.高阶容积卡尔曼滤波及其在目标跟踪中的应用[J].哈尔滨工程大学学报,2016,37(4):573-578.ZHANG L,CUI N G,YANG F,et al.High-degree cubature Kalman filter and its application in target tracking[J].Journal of Harbin Engineering University,2016,37(4):573-578(in Chinese).
[7] BHAUMIK S,WATI S.Cubature quarature Kalman filter[J]. IET Signal Processing,2013,7(7):533-541.
[8] LAINIOTIS D G.Optimal adaptive estimation:Structure and parameters adaption[J].IEEE Transactions on Automatic Control,1971,16(2):160-170.
[9] MEHRA R K. On the identification of variances and adaptive filtering[J].IEEE Transactions on Automatic Control,1970,15(2):175-184.
[10] ODELSON B J,RAJAMANI M R,RAWLINGS J B.A new autocovariance least-squares method for estimating noise covariances[J].Automatica, 2006,42(2):303-308.
[11] AKESSON B M,JORGENSON J B,POULSEN N K,et al.A generalized autocovariance least-squares method for Kalman filter tuning[J].Journal of Process Control,2008,18(7-8):769-779.
[12] MYERS K A,TAPLEY B D.Adaptive sequential estimation with unknown noise statistics[J].IEEE Transactions on Automatic Control,1976,21(8):520-523.
[13] KASHYAP R L.Maximum likelihood identification of stochastic linear systems[J].IEEE Transactions on Automatic Control,1970,15(1):25-34.
[14] LIMA F V, RAJAMANI M R, SODERSTROM T A,et al.Covariance and state estimation of weakly observable systems:Application to polymerization processes[J].IEEE Transactions on Control Systems Technology,2013,21(4):1249-1257.
[15] 李宁,祝瑞辉,张勇刚.基于Sage-Husa算法的自适应平方根CKF目标跟踪方法[J].系统工程与电子技术,2014,36(10):1899-1905.LI N,ZHU R H,ZHANG Y G.Adaptive square CKF method for target tracking based on Sage-Husa algorithm[J].Systems Engineering and Electronics,2014,36(10):1899-1905(in Chinese).
[16] 王小旭,潘泉,黄鹤,等.非线性系统确定采样型滤波算法综述[J].控制与决策,2012,27(6):801-812.WANG X X,PAN Q,HUANG H,et al.Overview of deterministic sampling filtering algorithms for nonlinear system[J].Control and Decision,2012,27(6):801-812(in Chinese).
[17] 周东华,席裕庚,张钟俊.一种带多重次优渐消因子的扩展卡尔曼滤波器[J].自动化学报,1991,17(6):689-695.ZHANG D H,XI Y G,ZHANG Z J.A suboptimal multiple fading extended Kalman filter[J].Acta Automatica Sinica, 1991,17(6):689-695(in Chinese).
[18] 方君,戴邵武,许文明,等.基于ST-SRCKF的超高速强机动目标跟踪算法[J].北京航空航天大学学报,2016,42(8):1698-1708.FANG J,DAI S W,XU W M,et al.Highly maneuvering hypervelocity-target tracking algorithm based on ST-SRCKF[J].Journal of Beijing University of Aeronautics and Astronautics,2016,42(8):1698-1708(in Chinese).
[19] 张龙,崔乃刚,王小刚,等.强跟踪-容积卡尔曼滤波在弹道式再入目标跟踪中的应用[J].中国惯性技术学报,2015,23(2):211-218.ZHANG L,CUI N G,WANG X G,et al.Strong tracking-cubature Kalman filter for tracking ballistic reentry target[J].Journal of Chinese Inertial Technology,2015,23(2):211-218(in Chinese).
[20] 赵琳,王小旭,孙明,等.基于极大后验估计和指数加权的自适应UKF滤波算法[J].自动化学报,2010,36(7):1007-1019.ZHAO L,WANG X X,SUN M,et al.Adaptive UKF filteing algorithm based on maximum a posterior estimation and exponential weighting[J].Acta Automatica Sinica,2010,36(7):1007-1019(in Chinese).
[21] 丁家琳,肖建,赵涛.自适应CKF强跟踪滤波器及其应用[J].电机与控制学报,2015,19(11):111-120.DING J L,XIAO J,ZHAO T.Adaptive CKF strong tracking filter and application[J].Electric Machines and Control,2015,19(11):111-120(in Chinese). |