留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临近空间环境下封闭方腔内耦合换热特性

字贵才 贺卫亮

字贵才, 贺卫亮. 临近空间环境下封闭方腔内耦合换热特性[J]. 北京航空航天大学学报, 2018, 44(6): 1283-1293. doi: 10.13700/j.bh.1001-5965.2017.0412
引用本文: 字贵才, 贺卫亮. 临近空间环境下封闭方腔内耦合换热特性[J]. 北京航空航天大学学报, 2018, 44(6): 1283-1293. doi: 10.13700/j.bh.1001-5965.2017.0412
ZI Guicai, HE Weiliang. Conjugate heat transfer characteristics of enclosure cavity in near space environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1283-1293. doi: 10.13700/j.bh.1001-5965.2017.0412(in Chinese)
Citation: ZI Guicai, HE Weiliang. Conjugate heat transfer characteristics of enclosure cavity in near space environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1283-1293. doi: 10.13700/j.bh.1001-5965.2017.0412(in Chinese)

临近空间环境下封闭方腔内耦合换热特性

doi: 10.13700/j.bh.1001-5965.2017.0412
详细信息
    作者简介:

    字贵才  男, 硕士研究生。主要研究方向:飞行器设计

    贺卫亮  男, 博士, 教授, 博士生导师。主要研究方向:飞行器设计

    通讯作者:

    贺卫亮, E-mail:heweiliang@buaa.edu.cn

  • 中图分类号: V273

Conjugate heat transfer characteristics of enclosure cavity in near space environment

More Information
  • 摘要:

    以临近空间浮空器载荷舱为应用背景,对复杂热边界条件下含热源的三维封闭方腔内自然对流、表面辐射和导热的耦合问题进行了数值模拟。综合考虑对流换热、长波辐射、太阳辐射等因素的影响,建立了临近空间热环境模型。通过Fluent软件用户自定义函数(UDF)引入外部非定常的辐射-对流耦合热边界条件,对腔内换热特性的昼夜变化进行研究,并分析了腔壁厚度、发射率和导热系数对其的影响。数值结果表明,腔内平均温度昼夜变化很小,约为12.9 K,但温度场分布随太阳方位变化而变化;腔内对流换热较弱,同一时刻最大温差约为71.3 K;腔壁热阻和发射率增加会削弱自然对流的强度。

     

  • 图 1  封闭方腔热分析模型

    Figure 1.  Thermal analysis model of enclosure cavity

    图 2  X=0.28 m截面的网格示意图

    Figure 2.  Schematic of grid at X=0.28 m section

    图 3  不同网格下沿直线X=Y=0.28 m的温度变化曲线

    Figure 3.  Variation curves of temperature at X=Y=0.28 m for different grids

    图 4  腔内温度极值和平均值随时间变化曲线

    Figure 4.  Variation of extreme and average temperature in cavity with time

    图 5  不同时刻腔内温度和垂直速度分布云图

    Figure 5.  Distribution contours of temperature and vertical velocity in cavity at different time

    图 6  0:00和12:00时刻Y=0.28 m截面垂直方向的速度矢量图

    Figure 6.  Vertical velocity vector of Y=0.28 m section at 0:00 and 12:00

    图 7  腔内顶面平均努赛尔数和空气温差变化曲线

    Figure 7.  Variation curves of average Nusselt numbers and air temperature differences at top surface in cavity

    图 8  0:00时刻不同内表面发射率下X=0.28 m截面的温度和速度等值线

    Figure 8.  Temperature and velocity contours at X=0.28 m section for different values of internal surface emissivity at 0:00

    图 9  0:00时刻腔内温度极值和平均温度随内表面发射率的变化

    Figure 9.  Change of extreme temperature and average temperature in cavity with internal surface emissivity at 0:00

    图 10  0:00时刻不同内表面发射率下直线X=Z=0.28 m方向垂直速度变化曲线

    Figure 10.  Variation curve of vertical velocity at X=Z=0.28 m for different values of internal surface emissivity at 0:00

    图 11  0:00时刻不同腔壁导热系数下X=0.28 m截面的温度和速度等值线

    Figure 11.  Temperature and velocity contours at X=0.28 m section for different values of thermal conductivity at 0:00

    图 12  0:00时刻不同腔壁导热系数下直线X=Z=0.28 m方向温度和垂直速度的变化曲线

    Figure 12.  Profiles of temperature and vertical velocity at X=Z=0.28 m for different values of thermal conductivity at 0:00

    图 13  0:00时刻不同腔壁厚度下X=0.28 m截面的温度和速度等值线

    Figure 13.  Temperature and velocity contours at X=0.28 m section for different values of solid wall thickness at 0:00

    图 14  0:00时刻不同腔壁厚度下直线X=Z=0.28 m方向温度和垂直速度的变化曲线

    Figure 14.  Variation curve of temperature and vertical velocity at X=Z=0.28 m for different values of solid wall thickness at 0:00

    图 15  腔内平均温度为262 K时,导热系数和腔壁厚度的关系

    Figure 15.  Thermal conductivity versus solid wall thickness when average temperature in cavity is 262 K

    表  1  0:00时刻腔内顶面辐射和对流换热量

    Table  1.   Radiation and convective heat transfer at top surface in cavity at 0:00

    内表面发射率 辐射换热量/W 对流换热量/W 总换热量/W
    0.2 2.99 1.92 4.91
    0.4 3.30 1.73 5.03
    0.6 3.43 1.65 5.08
    0.8 3.47 1.63 5.10
    下载: 导出CSV
  • [1] 夏新林, 李德富, 杨小川.平流层浮空器的热特性与研究现状[J].航空学报, 2009, 30(4):577-583. http://www.cqvip.com/QK/91925X/200904/30176865.html

    XIA X L, LI D F, YANG X C.Thermal characteristics of stratospheric aerostats and their research[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(4):577-583(in Chinese). http://www.cqvip.com/QK/91925X/200904/30176865.html
    [2] FARLEY R E. Balloonascent: 3-D simulation tool for the ascent and float of high-altitude balloons: AIAA-2005-7412[R]. Reston: AIAA, 2005.
    [3] DAI Q M, FANG X D, LI X J, et al.Performance simulation of high altitude scientific balloons[J].Advances in Space Research, 2012, 49(6):1045-1052. doi: 10.1016/j.asr.2011.12.026
    [4] CHOI S K, KIM S O.Turbulence modeling of natural convection in enclosures:A review[J].Journal of Mechanical Science and Technology, 2012, 26(1):283-297. doi: 10.1007/s12206-011-1037-0
    [5] XAMÁN J, ARCE J, ÁLVAREZ G, et al.Laminar and turbulent natural convection combined with surface thermal radiation in a square cavity with a glass wall[J].International Journal of Thermal Sciences, 2008, 47(12):1630-1638. doi: 10.1016/j.ijthermalsci.2008.01.012
    [6] KUZNETSOV G V, SHEREMET M A.Numerical simulation of turbulent natural convection in a rectangular enclosure having finite thickness walls[J].International Journal of Heat & Mass Transfer, 2010, 53(1):163-177. http://www.sciencedirect.com/science/article/pii/S0017931009005249
    [7] MARTYUSHEY S G, SHEREMET M A.Conjugate natural convection combined with surface thermal radiation in an air filled cavity with internal heat source[J].International Journal of Thermal Sciences, 2014, 76(2):51-67. http://www.sciencedirect.com/science/article/pii/S1290072913002019
    [8] MARTYUSHEY S G, SHEREMET M A.Conjugate natural convection combined with surface thermal radiation in a three-dimensional enclosure with a heat source[J].International Journal of Heat & Mass Transfer, 2014, 73(9):340-353. http://www.sciencedirect.com/science/article/pii/S0017931014001264
    [9] 许玉, 方贤德, 李小建, 等.浮空器载荷舱热特性研究[J].科学技术与工程, 2011, 11(30):7577-7579. doi: 10.3969/j.issn.1671-1815.2011.30.057

    XU Y, FANG X D, LI X J, et al.A study of thermal characteristics of aerostats' load cabins[J].Science Technology and Engineering, 2011, 11(30):7577-7579(in Chinese). doi: 10.3969/j.issn.1671-1815.2011.30.057
    [10] 邓丽君. 一种临近空间浮空器热控系统的研究[D]. 南京: 南京理工大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10288-2009197067.htm

    DENG L J. Study on thermal control system of a near space vehiel[D]. Nanjing: Nanjing University of Science and Technology, 2009(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10288-2009197067.htm
    [11] 李小建. 临近空间浮空器热-结构耦合数值模拟研究[D]. 南京: 南京航空航天大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10287-1014060019.htm

    LI X J. Numerical simulation of thermal-structure coupling for near space airship[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1014060019.htm
    [12] 张贺磊, 方贤德, 戴秋敏.临近空间飞艇内部自然对流换热计算研究[J].宇航学报, 2016, 37(7):879-886. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201504002.htm

    ZHANG H L, FANG X D, DAI Q M.Investigation on internal natural convection of stratospheric airship[J].Journal of Astronautics, 2016, 37(7):879-886(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201504002.htm
    [13] 刘强, 武哲, 祝明, 等.平流层气球热动力学仿真[J].北京航空航天大学学报, 2013, 39(12):1578-1583. http://bhxb.buaa.edu.cn/CN/abstract/abstract12793.shtml

    LIU Q, WU Z, ZHU M, et al.Thermal-dynamic simulation of stratospheric balloon[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12):1578-1583(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12793.shtml
    [14] 徐向华, 程雪涛, 梁新刚.平流层浮空器的热数值分析[J].清华大学学报(自然科学版), 2009, 49(11):1848-1851. doi: 10.3321/j.issn:1000-0054.2009.11.027

    XU X H, CHENG X T, LIANG X G.Thermal analysis of a stratospheric airship[J].Journal of Tsinghua University(Science and Technology), 2009, 49(11):1848-1851(in Chinese). doi: 10.3321/j.issn:1000-0054.2009.11.027
    [15] 夏新林, 李德富, 杨小川.复合热条件下椭球形封闭腔内低压气体的自然对流[J].航空学报, 2010, 31(3):453-458. http://www.cqvip.com/QK/91925X/201003/33333397.html

    XIA X L, LI D F, YANG X C.Natural convection of low pressure gas in ellipsoidal enclosure induced by combined thermal conditions[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(3):453-458(in Chinese). http://www.cqvip.com/QK/91925X/201003/33333397.html
    [16] 邓启红. 室内空气对流的特征与模拟[D]. 长沙: 湖南大学, 2003.

    DENG Q H. Modeling and characteristics of indoor air convection[D]. Changsha: Hunan University, 2003(in Chinese).
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  583
  • HTML全文浏览量:  42
  • PDF下载量:  466
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-19
  • 录用日期:  2017-10-13
  • 网络出版日期:  2018-06-20

目录

    /

    返回文章
    返回
    常见问答