留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于工程转捩模型的高超声速进气道特性

杨慧 路文睿 李虹杨 岳连捷

杨慧, 路文睿, 李虹杨, 等 . 基于工程转捩模型的高超声速进气道特性[J]. 北京航空航天大学学报, 2018, 44(7): 1408-1418. doi: 10.13700/j.bh.1001-5965.2017.0516
引用本文: 杨慧, 路文睿, 李虹杨, 等 . 基于工程转捩模型的高超声速进气道特性[J]. 北京航空航天大学学报, 2018, 44(7): 1408-1418. doi: 10.13700/j.bh.1001-5965.2017.0516
YANG Hui, LU Wenrui, LI Hongyang, et al. Hypersonic air inlet performance based on engineering transition model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1408-1418. doi: 10.13700/j.bh.1001-5965.2017.0516(in Chinese)
Citation: YANG Hui, LU Wenrui, LI Hongyang, et al. Hypersonic air inlet performance based on engineering transition model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1408-1418. doi: 10.13700/j.bh.1001-5965.2017.0516(in Chinese)

基于工程转捩模型的高超声速进气道特性

doi: 10.13700/j.bh.1001-5965.2017.0516
详细信息
    作者简介:

    杨慧  女, 博士, 讲师。主要研究方向:叶轮机械气动弹性数值模拟和实验

    路文睿  女, 硕士研究生。主要研究方向:叶轮机械流动数值模拟、叶片颤振数值模拟

    李虹杨  男, 博士研究生。主要研究方向:高超声速流动数值模拟, 流/热耦合数值模拟

    通讯作者:

    杨慧.E-mail:huiyang@buaa.edu.cn

  • 中图分类号: V211.3

Hypersonic air inlet performance based on engineering transition model

More Information
  • 摘要:

    为研究高超声速进气道的性能参数随飞行高度、来流湍流度及来流马赫数的变化规律,并考察其压缩面上的边界层转捩现象对进气道性能的影响,采用本课题组程序平台HGFS所发展的γ-Reθ转捩模型进行了一系列的数值模拟工作,并对相应的流动现象和机理进行分析。首先,利用进气道压缩面的简化模型对γ-Reθ转捩模型经验关联公式的高超声速改进方法进行了验证;其次,以某型等熵压缩面的高超声速进气道为对象,研究了飞行高度、来流马赫数对边界层转捩位置等多个参数的影响。结果表明:随着飞行高度的增加,压缩面上边界层转捩位置延后,进气道总压恢复系数下降;与地表情况相比,在设计飞行高度转捩位置延后了约0.525 m,边界层厚度增加了约73%,总压恢复系数下降了约3.2%;来流湍流度变化0.5%量级可导致转捩位置移动0.2 m左右,但来流湍流度对总压恢复系数的影响则很小。

     

  • 图 3  前缘带倒圆的压缩面的计算网格

    Figure 3.  Computational mesh for blunt leading edge compression surface

    图 1  ReθtTu的新的经验关联曲线

    Figure 1.  New empirical correlation curves of Reθt vs Tu

    图 2  高超声速飞行器进气道示意图

    Figure 2.  Schematic of air inlet of hypersonic aircraft

    图 4  不同模型计算的静压和流线分布

    Figure 4.  Distribution of static pressure and streamline calculated by different models

    图 5  计算得到的压力系数和斯坦顿数与实验值的对比

    Figure 5.  Comparison of calculated pressure coefficient and Stanton number with expemental values

    图 6  高超声速进气道的计算域和网格

    Figure 6.  Computational domain and mesh of hypersonic air inlet

    图 7  计算得到的设计状态静压分布

    Figure 7.  Distribution of computed static pressure under design condition

    图 8  压力系数和壁面摩阻系数随飞行高度的变化

    Figure 8.  Variation of pressure coefficient and skin friction resistance coefficient with flight height

    图 9  分离泡强度随飞行高度的变化(Ma=6.0)

    Figure 9.  Variation of separation bubble strength with flight height (Ma=6.0)

    图 10  速度型曲线随飞行高度的变化(x=1.85 m)

    Figure 10.  Variation of velocity profile with flight height (x=1.85 m)

    图 11  压力系数和壁面摩阻系数随来流湍流度的变化

    Figure 11.  Variation of pressure coefficient and skin friction resistance coefficient with free stream turbulence intensity

    图 12  静压和流线随来流马赫数的变化

    Figure 12.  Variation of static pressure and streamline with free stream Mach number

    图 13  壁面摩阻系数随来流马赫数的变化

    Figure 13.  Variation of skin friction resistance coefficient with free stream Mach number

    表  1  部分性能参数随飞行高度的变化

    Table  1.   Variation of some performance parameters with flight height

    飞行高度/km 总压恢复系数 边界层厚度(相对值)/% 转捩位置/m
    0 0.750 8.8 0.025
    5 0.750 9.6 0.04
    10 0.749 10.4 0.065
    15 0.743 11.2 0.12
    20 0.733 12.0 0.24
    23 0.725 13.6 0.35
    26 0.718 15.2 0.55
    下载: 导出CSV

    表  2  部分性能参数随来流湍流度的变化

    Table  2.   Variation of some performance parameters with free stream turbulence intensity

    来流湍流度/% 总压恢复系数 转捩位置/m
    0.5 0.705 0.7
    1.0 0.703 0.55
    1.5 0.700 0.35
    1.75 0.699 0.25
    2.5 0.697 0.1
    下载: 导出CSV

    表  3  部分性能参数随来流马赫数的变化

    Table  3.   Variation of some performance parameters with free stream Mach number

    来流马赫数 总压恢复系数 转捩位置/m
    4.2 0.721 0.18
    4.5 0.729 0.26
    5.0 0.741 0.34
    5.5 0.746 0.64
    6.0 0.704 0.64
    6.5 0.617 0.64
    7.0 0.523 0.64
    下载: 导出CSV
  • [1] 黄伟, 罗世彬, 王振国.临近空间高超声速飞行器关键技术及展望[J].宇航学报, 2010, 31(5):1259-1265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhdd201405012

    HUANG W, LUO S B, WANG Z G.Key techniques and prospect of near-space hypersonic vehicle[J].Journal of Astronautics, 2010, 31(5):1259-1265(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhdd201405012
    [2] 李祝飞. 高超声速进气道起动特性机理研究[D]. 合肥: 中国科学技术大学, 2013: 1.

    LI Z F. An investigation on starting characteristics of hypersonic inlets[D]. Hefei: University of Science and Technology of China, 2013: 1(in Chinese).
    [3] 张玉伦, 王光学, 孟德虹, 等.γ-Reθ转捩模型的标定研究[J].空气动力学学报, 2011, 29(3):295-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201103006

    ZHANG Y L, WANG G X, MENG D H, et al.Calibration of γ-Reθ transition model[J].Acta Aerodynamica Sinica, 2011, 29(3):295-301(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201103006
    [4] 许丁, 马晖扬.高超声速边界层工程转捩模式研究[J].中国科学院研究生院学报, 2009, 26(1):43-49. http://www.cqvip.com/QK/97442X/200901/29778023.html

    XU D, MA H Y.Engineering transition models for hypersonic boundary layer[J].Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(1):43-49(in Chinese). http://www.cqvip.com/QK/97442X/200901/29778023.html
    [5] MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation-based transition model using local variables:Part Ⅰ:Model formulation[J].Journal of Turbomachinery, 2006, 128(3):57-67.
    [6] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables: Part Ⅱ: Test cases and industrial applications: GT-2004-53454[C]//ASME Turbo Expo 2004: Power for Land, Sea, and Air. New York: ASME, 2004, 4: 69-79.
    [7] MALAN P, SULUKSNA K, JUNTASARO E. Calibrating the γ-Reθ transition model for commercial CFD[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings. Reston: AIAA, 2009.
    [8] 陈奕, 高正红.γ-Reθ转捩模型在绕翼型流动问题中的应用[J].空气动力学学报, 2009, 27(4):411-418. http://www.cqvip.com/qk/95593X/200904/31402959.html

    CHEN Y, GAO Z H.Application of γ-Reθ transition model to flows around airfoils[J].Acta Aerodynamica Sinica, 2009, 27(4):411-418(in Chinese). http://www.cqvip.com/qk/95593X/200904/31402959.html
    [9] 钟伟, 王同光.转捩对风力机翼型和叶片失速特性影响的数值模拟[J].空气动力学学报, 2011, 29(3):385-390. http://www.cqvip.com/QK/95593X/201103/38427698.html

    ZHONG W, WANG T G.Numerical analysis of transition effect on stall performance of wind turbine airfoils and blades[J].Acta Aerodynamica Sinica, 2011, 29(3):385-390(in Chinese). http://www.cqvip.com/QK/95593X/201103/38427698.html
    [10] 郑赟, 李虹杨, 刘大响.γ-Reθ转捩模型在高超声速下的应用及分析[J].推进技术, 2014, 35(3):296-304. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201403003&dbname=CJFD&dbcode=CJFQ

    ZHENG Y, LI H Y, LIU D X.Application and analysis of γ-Reθ transition model in hypersonic flow[J].Journal of Propulsion Technology, 2014, 35(3):296-304(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201403003&dbname=CJFD&dbcode=CJFQ
    [11] 孔维萱, 阎超, 赵瑞.γ-Reθ模式应用于高速边界层转捩的研究[J].空气动力学学报, 2013, 31(1):120-126. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx201301022&dbname=CJFD&dbcode=CJFQ

    KONG W X, YAN C, ZHAO R.γ-Reθ model research for high-speed boundary layer transition[J].Acta Aerodynamica Sinica, 2013, 31(1):120-126(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx201301022&dbname=CJFD&dbcode=CJFQ
    [12] BENSASSI K, LANI A, RAMBAUD P. Numerical investigations of local correlation-based transition model in hypersonic flows: AIAA-2012-3151[R]. Reston: AIAA, 2012.
    [13] CHENG G, NICHOLS R, NEROORKAR K, et al. Validation and assessment of turbulence transition models: AIAA-2009-1141[R]. Reston: AIAA, 2009.
    [14] 张毅锋, 雷净, 张益荣, 等.高超声速数值模拟平台转捩模型的标定[J].空气动力学学报, 2015, 33(1):42-47. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kqdlxxb2015010008

    ZHANG Y F, LEI J, ZHANG Y R, et al.Calibration of transition model for hypersonic numerical simulation platform[J].Acta Aerodynamica Sinica, 2015, 33(1):42-47(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kqdlxxb2015010008
    [15] 张毅锋, 何琨, 张益荣, 等.Menter转捩模型在高超声速流动模拟中的改进及验证[J].宇航学报, 2016, 37(4):397-402. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yhxb201604004

    ZHANG Y F, HE K, ZHANG Y R, et al.Improvement and validation of menter's transition model for hypersonic flow simulation[J].Journal of Astronautics, 2016, 37(4):397-402(in Chinese). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yhxb201604004
    [16] ZHANG X D, GAO Z H.A numerical research on a compressibility-correlated langtry's transition model for double wedge boundary layer flows[J].Chinese Journal of Aeronautics, 2011, 24(3):249-257. doi: 10.1016/S1000-9361(11)60030-7
    [17] YOU Y C, LUEDEKE H, EGGERS T, et al. Application of the γ-Reθ transition model in high speed flows[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012.
    [18] 夏陈超, 姜婷婷, 郭中州, 等.压缩性修正对γ-Reθ转捩模型的影响研究[J].空气动力学学报, 2015, 33(5):603-609. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx201505004&dbname=CJFD&dbcode=CJFQ

    XIA C C, JIANG T T, GUO Z Z, et al.Effects of compressibility correction on γ-Reθ transition model[J].Acta Aerodynamica Sinica, 2015, 33(5):603-609(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx201505004&dbname=CJFD&dbcode=CJFQ
    [19] 郑赟, 李虹杨.基于新的经验关联公式的γ-Reθ转捩模型在高超声速流动中的应用[J].推进技术, 2015, 36(6):839-845. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201506006&dbname=CJFD&dbcode=CJFQ

    ZHENG Y, LI H Y.Application of γ-Reθ transition model in hypersonic flow based on new correlation equation[J].Journal of Propulsion Technology, 2015, 36(6):839-845(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201506006&dbname=CJFD&dbcode=CJFQ
    [20] DENISSEN N A, YODER D A, GEORGIADIS N J. Implementation and validation of a laminar-to-turbulent transition model in the wind-us code: NASA/TM-2008-215451[R]. Washington, D. C. : NASA, 2008: 27.
    [21] RESHOTKO E.Is retheta/me a meaningful transition criterion [J].AIAA Journal, 2007, 45(7):1441-1443. doi: 10.2514/1.29952
    [22] LANGTRY R B, MENTER F R.Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J].AIAA Journal, 2009, 47(12):2894-2906. doi: 10.2514/1.42362
    [23] 李虹杨, 郑赟.尾迹对涡轮叶栅边界层转捩的影响[J].推进技术, 2017, 38(3):532-538. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200904021

    LI H Y, ZHENG Y.Effect of wake on boundary layer transition of turbine cascade[J].Journal of Propulsion Technology, 2017, 38(3):532-538(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200904021
    [24] LI H Y, ZHENG Y. Effect of surface roughness on conjugate heat transfer of a turbine vane: GT-2016-56744[C]//ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016: V05AT13A012.
    [25] NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
    [26] REINARTZ B, BALLMANN J. Computation of hypersonic double wedge shock/boundary layer interaction[C]//26th International Symposium on Shock Waves. Berlin: Springer, 2008: 1099-1104.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  499
  • HTML全文浏览量:  58
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-31
  • 录用日期:  2017-08-11
  • 网络出版日期:  2018-07-20

目录

    /

    返回文章
    返回
    常见问答