留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子推力器羽流热效应仿真分析

张建华 李晶华 尤凤仪 郑鸿儒

张建华, 李晶华, 尤凤仪, 等 . 离子推力器羽流热效应仿真分析[J]. 北京航空航天大学学报, 2018, 44(10): 2028-2034. doi: 10.13700/j.bh.1001-5965.2017.0802
引用本文: 张建华, 李晶华, 尤凤仪, 等 . 离子推力器羽流热效应仿真分析[J]. 北京航空航天大学学报, 2018, 44(10): 2028-2034. doi: 10.13700/j.bh.1001-5965.2017.0802
ZHANG Jianhua, LI Jinghua, YOU Fengyi, et al. Simulation analysis of ion thruster plume thermal effect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2028-2034. doi: 10.13700/j.bh.1001-5965.2017.0802(in Chinese)
Citation: ZHANG Jianhua, LI Jinghua, YOU Fengyi, et al. Simulation analysis of ion thruster plume thermal effect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2028-2034. doi: 10.13700/j.bh.1001-5965.2017.0802(in Chinese)

离子推力器羽流热效应仿真分析

doi: 10.13700/j.bh.1001-5965.2017.0802
详细信息
    作者简介:

    张建华  男, 博士, 副研究员。主要研究方向:航空宇航推进理论与技术、稀薄气体动力学、火箭发动机流场计算及测试

    通讯作者:

    张建华, E-mail:zjh@buaa.edu.cn

  • 中图分类号: V439

Simulation analysis of ion thruster plume thermal effect

More Information
  • 摘要:

    离子推力器工作时向外喷出的羽流与航天器表面碰撞,会引起敏感材料热变形等热效应,严重时会导致航天任务失败。针对兰州空间技术物理研究所研制的LIPS-200型离子推力器羽流热效应进行了仿真分析。仿真中,使用粒子网格(PIC)方法处理等离子体运动,使用直接模拟蒙特卡罗(DSMC)方法处理粒子间碰撞,使用Maxwell模型处理粒子与壁面的能量交换,对电推进羽流热效应测量中的部分测点进行了数值模拟。结果表明,仿真结果与实验数据符合较好,离子推力器出口轴线上滞止热流仿真值与实验测量值误差小于17.0%。此外,热流计对流场的影响主要集中在热流计附近0.1 m范围内,对整体流场影响较小。

     

  • 图 1  离子推力器羽流热效应测量系统示意图

    Figure 1.  Schematic diagram of ion thruster plume thermal effect measurement system

    图 2  两种热流传感器实物图

    Figure 2.  Photo of two kinds of heat flow sensor

    图 3  计算域示意图

    Figure 3.  Schematic diagram of computational domain

    图 4  推力器与模拟热流计相对位置示意图

    Figure 4.  Schematic diagram of relative position of thruster and simulated heat flow meter

    图 5  羽流场电流密度仿真与实验对比

    Figure 5.  Comparison of current density in plume flow field between simulation and experiment

    图 6  轴向位置热效应实验和仿真对比

    Figure 6.  Comparison of thermal effect in axial direction between simulation and experiment

    图 7  距离推力器出口0.5 m和0.9 m处径向热流对比

    Figure 7.  Comparison of radial heat flow at 0.5 m and 0.9 m from thruster exit

    图 8  距离推力器出口0.9 m处放置热流计时的一价Xe离子和Xe原子分布

    Figure 8.  Number density distribution of Xe atom and monovalent xenon ion when heat flow meter is located at 0.9 m away from thruster exit

    图 9  距离推力器出口0.9 m处放置热流计时的一价Xe离子、Xe原子及无热流计时数密度对比

    Figure 9.  Comparison of xenon atom and monovalent xenon ion number density distribution on axis with or without heat folw meter located at 0.9 m away from thruster exit

    表  1  LIPS-200型离子推力器仿真基本参数

    Table  1.   Basic parameters of LIPS-200 ion thruster simulation

    粒子种类 流率/s-1 温度/K 速度/(m·s-1)
    Xe 5.69×1017 300 325
    Xe+ 4.609×1018 46400 39000
    Xe++ 5.12×1017 46400 55154
    下载: 导出CSV
  • [1] KORKUT B, LEVIN D A, TUMUKLU O.Simulations of ion thruster plumes in ground facilities using adaptive mesh refinement[J].Journal of Propulsion and Power, 2017, 33(3):681-696. doi: 10.2514/1.B35958
    [2] BROPHY J.Advanced ion propulsion systems for affordable deep-space missions[J].Acta Astronautica, 2003, 52(2):309-316.
    [3] HU Y, WANG J.Electron properties in collisionless mesothermal plasma expansion:Fully kinetic simulations[J].IEEE Transactions on Plasma Science, 2015, 43(9):2832-2838. doi: 10.1109/TPS.2015.2433928
    [4] 周志雄, 魏蔚, 汪荣顺.真空下气-固界面热适应系数的数值计算[J].低温与超导, 2007, 35(1):36-40. doi: 10.3969/j.issn.1001-7100.2007.01.010

    ZHOU Z X, WEI W, WANG R S.Themathematic calculation of thermal accommodation coefficients at gas-solid interface in vacuum[J].Cryogenics, 2007, 35(1):36-40(in Chinese). doi: 10.3969/j.issn.1001-7100.2007.01.010
    [5] BERISFORD D F, BENGTSON R D, RAJA L L, et al.Heat flow diagnostics for helicon plasmasa[J].Review of Scientific Instruments, 2008, 79(10):10F515. doi: 10.1063/1.2955710
    [6] 王黎珍, 史纪鑫, 郑世贵.推力器真空羽流热效应计算模型修正及误差分析[J].航天器环境工程, 2014, 31(5):483-488. doi: 10.3969/j.issn.1673-1379.2014.05.005

    WANG L Z, SHI J X, ZHENG S G.The error analysis and the improvement of heating effect model of the thruster vacuum plume[J].Spacecraft Environment Engineering, 2014, 31(5):483-488(in Chinese). doi: 10.3969/j.issn.1673-1379.2014.05.005
    [7] SHANG S F, CAI G B, ZHU D Q, et al.Design of double-layer anti-sputtering targets for plume effects experimental system[J].Science China:Technological Sciences, 2016, 59(8):1265-1275. doi: 10.1007/s11431-016-6037-y
    [8] HE B J, ZHANG J H, CAI G B.Research on vacuum plume and its effects[J].Chinese Journal of Aeronautics, 2013, 26(1):27-36. doi: 10.1016/j.cja.2012.12.016
    [9] BIRDSALL C K, LANGDON A B.Plasma physics via computer simulation[M].Bristol:ADAM Hilger, 1991.
    [10] BIRD G A.Molecular gas dynamics and the direct simulation of gas flows[M].Oxford:Oxford University Press, 1994.
    [11] GARNER C E, POLK J R, BROPHY J R, et al.Methods for cryopumping xenon: AIAA-96-3206[R].Reston: AIAA, 1996.
    [12] BYOD I D.A review of hall thruster plume modeling[J].Journal of Spacecraft & Rockets, 2000, 3(38):381-387.
    [13] ZHENG H R, CAI G B, LIU L H, et al.Three-dimensional particle simulation of back-sputtered carbon in electric propulsion test facility[J].Acta Astronautica, 2017, 132:161-169. doi: 10.1016/j.actaastro.2016.12.016
    [14] KIDD C T, NELSON C G.How the Schmidt-Boelter gage really works: CONF-9505201[R].Research Triangle Park: Instrument Society of America, 1995.
    [15] KELTNER N R.Heat flux measurements: Theory and applications[M].AZAR K.Thermal measurements in electronic cooling.Boca Raton: CRC Press, 1997: 273-320.
    [16] GIFFORD A, HOFFIE A, DILLER T, et al.Convection calibration of Schmidt-Boelter heat flux gages in shear and stagnation air flow[J].Journal of Heat Transfer, 2010, 132(3):031601. doi: 10.1115/1.3211866
    [17] VLADIMIR K, ALEXANDER S, IGOR S.Investigation of the accelerated ions energy accommodation under their impingement with solid surfaces: AIAA-2002-4110[R].Reston: AIAA, 2002.
    [18] ZHANG T P.Initial flight test results of the LIPS-200 electric propulsion system on SJ-9A satellite[C]//33rd International Electric Propulsion Conference, 2013: 47-54.
    [19] VANGILDER D B, FONT G I, BOYD I D.Hybrid Monte Carlo-particle-in-cell simulation of an ion thruster plume[J].Journal of Propulsion and Power, 1999, 15(4):530-538. doi: 10.2514/2.5475
    [20] CAI G B, LING G L, HE B J.An introduction to the novel vacuum plume effects experimental system[J].Science China-Technological Sciences, 2016, 59(6):953-960. doi: 10.1007/s11431-016-6024-3
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  38
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 录用日期:  2018-01-05
  • 网络出版日期:  2018-10-20

目录

    /

    返回文章
    返回
    常见问答