留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Adaboost的填充式防护结构超高速撞击损伤预测

丁文哲 李新洪 杨虹

丁文哲, 李新洪, 杨虹等 . 基于Adaboost的填充式防护结构超高速撞击损伤预测[J]. 北京航空航天大学学报, 2019, 45(1): 149-158. doi: 10.13700/j.bh.1001-5965.2018.0216
引用本文: 丁文哲, 李新洪, 杨虹等 . 基于Adaboost的填充式防护结构超高速撞击损伤预测[J]. 北京航空航天大学学报, 2019, 45(1): 149-158. doi: 10.13700/j.bh.1001-5965.2018.0216
DING Wenzhe, LI Xinhong, YANG Honget al. Hypervelocity impact damage prediction of stuffed Whipple shield based on Adaboost[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 149-158. doi: 10.13700/j.bh.1001-5965.2018.0216(in Chinese)
Citation: DING Wenzhe, LI Xinhong, YANG Honget al. Hypervelocity impact damage prediction of stuffed Whipple shield based on Adaboost[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 149-158. doi: 10.13700/j.bh.1001-5965.2018.0216(in Chinese)

基于Adaboost的填充式防护结构超高速撞击损伤预测

doi: 10.13700/j.bh.1001-5965.2018.0216
详细信息
    作者简介:

    丁文哲  男, 博士研究生。主要研究方向:航天器应用

    李新洪  男, 教授, 博士生导师。主要研究方向:航天器应用

    杨虹  女, 博士研究生。主要研究方向:航天任务分析与设计

    通讯作者:

    李新洪, E-mail: 13366159269@189.cn

  • 中图分类号: V423.4+3

Hypervelocity impact damage prediction of stuffed Whipple shield based on Adaboost

More Information
  • 摘要:

    填充式防护结构的显式弹道极限方程在对弹丸进行超高速撞击损伤预测时,由于填充材料、填充方式的不同,会导致预测结果与实测数据存在一定偏差。对此,采用机器学习方式将该问题转化为二分类问题,以碰撞过程中的弹丸撞击参数、防护结构参数作为分类特征,构建了基于Adaboost的填充式防护结构超高速撞击损伤预测模型。该模型以分类回归树(CART)作为弱分类器,通过对一系列弱分类器的加权组合生成强分类器,并通过对训练样本的循环使用,实现了小样本集下的撞击损伤预测。实验结果表明,建立的Adaboost预测模型对填充式防护结构的超高速撞击损伤具有良好的预测效果,总体预测率与安全预测率相比于NASA的弹道极限方程均提高了14.3%,具有更强的通用性。通过不同训练样本规模下的交叉检验,证明了该模型具有良好的鲁棒性与准确性。

     

  • 图 1  Nextel/Kevlar填充式防护结构

    Figure 1.  Stuffed Whipple shield of Nextel/Kevlar

    图 2  NASA弹道极限方程的预测效果

    Figure 2.  Prediction effect of NASA's ballistic limit equation

    图 3  Adaboost示意图

    Figure 3.  Schematic of Adaboost

    图 4  Adaboost测试误差和训练误差

    Figure 4.  Test error and training error of Adaboost

    图 5  基于Adaboost的超高速撞击损伤的预测流程

    Figure 5.  Hypervelocity impact damage prediction process based on Adaboost

    图 6  Adaboost预测模型预测误差和训练误差

    Figure 6.  Prediction error and training error of Adaboost prediction model

    图 7  10折交叉检验预测误差和训练误差

    Figure 7.  Prediction error and training error of 10-fold cross check

    图 8  NASA弹道极限方程在总体数据中的预测效果

    Figure 8.  Prediction effect of NASA ballistic limit equation on all data

    表  1  超高速撞击实验预测结果

    Table  1.   Prediction results of hypervelocity impact experiment

    编号 实际弹丸直径/cm 弹丸撞击速度/(km·s-1) 穿透结果 临界弹丸直径/cm 预测结果
    1 0.635 3.42 yes 0.5291
    2 0.635 3.99 no 0.6231 ×
    3 0.635 4.153 no 0.65
    4 0.635 4.21 no 0.6593
    5 0.635 3.87 yes 0.6033
    6 0.635 3.75 yes 0.5855
    7 0.635 3.82 no 0.597 ×
    8 0.635 1.24 yes 0.65 ×
    9 0.635 1.04 no 0.7308
    10 0.794 4.54 yes 0.7151
    11 0.794 2.1 yes 0.4575
    12 0.794 1.53 yes 0.565
    13 0.794 0.7645 no 0.8972
    14 0.794 1.3085 yes 0.6271
    15 0.794 1.81 yes 0.5047
    16 0.794 0.801 no 0.8692
    17 0.794 0.595 no 1.0597
    18 0.635 4.06 yes 0.6362 ×
    19 0.635 4.237 yes 0.6653 ×
    20 0.635 4.425 no 0.6961
    21 0.635 4.345 yes 0.683 ×
    22 0.635 1.404 yes 0.5979
    23 0.635 1.16 yes 0.679 ×
    24 0.635 1.12 no 0.6951
    25 0.635 2.97 yes 0.4572
    26 0.635 0.871 no 0.822
    27 0.635 0.801 no 0.8692
    28 0.635 1.062 no 0.7202
    29 0.635 1.31 yes 0.6262
    30 0.635 3.97 yes 0.6214
    31 0.635 2.2 yes 0.4432
    32 0.635 3.87 no 0.605 ×
    33 0.635 3.92 yes 0.6132
    34 0.635 4.3941 yes 0.691 ×
    35 0.635 4.46 yes 0.7019 ×
    下载: 导出CSV

    表  2  填充式防护结构的超高速撞击实验数据源

    Table  2.   Hypervelocity impact experimental data source of stuffed Whipple shield

    数据来源 总实验次数 低速段次数 中速段次数 后墙失效次数 防护成功次数
    文献[20] 5 2 3 0 5
    文献[13] 17 1 16 9 8
    文献[21] 27 19 8 16 11
    文献[15] 23 12 11 16 7
    下载: 导出CSV

    表  3  填充式防护结构的超高速撞击实验预测对比

    Table  3.   Predictive comparison of hypervelocity impact experiment of stuffed Whipple shield

    %
    模型 总体(35组) 低速段(17组) 中速段(18组)
    Ptotal Psafe Ptotal Psafe Ptotal Psafe
    NASA弹道极限方程 71.4 80.0 88.2 88.2 55.6 72.2
    Real Adaboost 85.7 94.3 100 100 72.2 88.9
    Modest Adaboost 85.7 94.3 100 100 72.2 88.9
    Gentle Adaboost 85.7 94.3 100 100 72.2 88.9
    下载: 导出CSV

    表  4  十次10折交叉检验结果

    Table  4.   Ten 10-fold cross check results

    检验标准 Real Adaboost Gentle Adaboost Modest Adaboost
    预测误差/% 12.15 11.83 13.85
    9.53 8.53 11.32
    13.32 14.09 14.61
    9.35 10.26 9.43
    12.30 12.49 11.49
    11.72 10.29 11.12
    13.22 13.22 13.22
    11.27 8.73 11.27
    12.40 12.08 13.51
    12.61 11.38 13.61
    平均预测准确率/% 88.21 88.71 87.66
    下载: 导出CSV

    表  5  不同规模训练样本的预测准确率

    Table  5.   Prediction accuracy of training samples with different scales

    检验标准 Real Adaboost Gentle Adaboost Modest Adaboost
    5折 3折 5折 3折 5折 3折
    预测误差/% 12.61 15.81 13.17 15.78 12.61 14.88
    13.14 10.68 12.09 9.57 12.09 12.01
    12.98 15.44 12.98 15.44 10.96 15.44
    14.40 13.07 13.84 12.00 16.15 12.00
    12.39 13.12 11.44 12.17 11.56 10.32
    平均预测准确率/% 86.90 86.38 87.30 87.01 87.33 87.07
    下载: 导出CSV
  • [1] WHIPPLE F L.Meteorites and space travel[J]. The Astronomical Journal, 1947, 52:131.
    [2] COUR-PALAIS B G, PIEKUTOWSKI A J.The multi-shock hypervelocity impact shield[M]//SCHMIDT S C, DICK R D, FORBES J W, et al.Shock compression of condensed matter-1991.Amsterdam: Elsevier, 1992: 979-982.
    [3] ROBINSON J H, HAYASHIDA K B.Double-plate penetration equations: NASA TM-2000-209907[R]. Washington, D.C.: NASA, 2000.
    [4] CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al.Enhanced meteoroid and orbital debris shielding[J]. International Journal of Impact Engineering, 1995, 17(1):217-228. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210172942/
    [5] RYAN S, THALER S.Artificial neural networks for characterizing Whipple shield performance[J]. Procedia Engineering, 2013, 58(56):31-38.
    [6] 柳森, 李毅, 黄洁, 等.用于验证数值仿真的Whipple屏超高速撞击试验结果[J].宇航学报, 2005, 26(4):505-508. doi: 10.3321/j.issn:1000-1328.2005.04.024

    LIU S, LI Y, HUANG J, et al.Hypervelocity impact test results of Whipple shield for the validation of numerical simulation[J]. Journal of Astronautics, 2005, 26(4):505-508(in Chinese). doi: 10.3321/j.issn:1000-1328.2005.04.024
    [7] 管公顺.航天器空间碎片防护结构超高速撞击特性研究[D].哈尔滨: 哈尔滨工业大学, 2006.

    GUAN G S.Hypervelocity impact characteristics investigation on the spacecraft space debris shield configuration[D]. Harbin: Harbin Institute of Technology, 2006(in Chinese).
    [8] 张晓天, 谌颖, 贾光辉.航天器单层板结构弹道极限的支持向量机预测模型[J].宇航学报, 2014, 35(3):298-305. doi: 10.3873/j.issn.1000-1328.2014.03.008

    ZHANG X T, SHEN Y, JIA G H.Support vector machine model for spacecraft single wall ballistic limit prediction[J]. Journal of Astronautics, 2014, 35(3):298-305(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.03.008
    [9] 贾光辉, 欧阳智江, 蒋辉, 等.填充式防护结构弹道极限方程的多指标寻优[J].北京航空航天大学学报, 2013, 39(12):1573-1583. http://bhxb.buaa.edu.cn/CN/abstract/abstract12792.shtml

    JIA G H, OUYANG Z J, JIANG H, et al.Multiple indicators optimization for stuffed Whipple shield ballistic limit equation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12):1573-1583(in Chiese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12792.shtml
    [10] 贾光辉, 欧阳智江, 蒋辉.撞击极限方程预测指标剖析与实例[J].航空学报, 2013, 34(10):2364-2371. http://d.old.wanfangdata.com.cn/Periodical/hkxb201310014

    JIA G H, OUYANG Z J, JIANG H.Analysis and instances of ballistic limit equations' predictive indicators[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2364-2371(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201310014
    [11] 姚光乐, 贾光辉.填充式防护结构弹道极限方程形式建模[J].空间碎片研究, 2017, 17(1):29-33. http://youxian.cnki.com.cn/yxdetail.aspx?filename=SDIR201701008&dbname=CJFDPREP

    YAO G L, JIA G H.Formal modeling of ballistic limit equations for stuffed Whipple shield[J]. Space Debris Research, 2017, 17(1):29-33(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=SDIR201701008&dbname=CJFDPREP
    [12] 贾光辉, 姚光乐, 张帅.填充式防护结构弹道极限方程的差异演化优化[J].北京航空航天大学学报, 2018, 44(7):1489-1495. http://bhxb.buaa.edu.cn/CN/abstract/abstract14536.shtml

    JIA G H, YAO G L, ZHANG S.Differential evolution optimization for stuffed Whipple shield ballistic limit equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7):1489-1495(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14536.shtml
    [13] 哈跃.玄武岩纤维材料及其填充防护结构超高速撞击特性研究[D].哈尔滨: 哈尔滨工业大学, 2009. http://kns.cnki.net/kns/detail/detail.aspx?QueryID=3&CurRec=10&recid=&FileName=2011015844.nh&DbName=CDFD0911&DbCode=CDFD&yx=&pr=&URLID=

    HA Y.Research on hypervelocity impact properties of woven of basalt fiber material and its stuffed shielding structure[D]. Harbin: Harbin Institute of Technology, 2009(in Chinese). http://kns.cnki.net/kns/detail/detail.aspx?QueryID=3&CurRec=10&recid=&FileName=2011015844.nh&DbName=CDFD0911&DbCode=CDFD&yx=&pr=&URLID=
    [14] 张宝玺.超高速撞击玄武岩及Kevlar纤维布填充防护结构优化设计[D].哈尔滨: 哈尔滨工业大学, 2011. http://kns.cnki.net/kns/detail/detail.aspx?QueryID=6&CurRec=6&recid=&FileName=1012002274.nh&DbName=CMFD2012&DbCode=CMFD&yx=&pr=&URLID=

    ZHANG B X.Optimum design of the protection structure of basalt and Kevlar fiber cloth filled with hypervelocity impact[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese). http://kns.cnki.net/kns/detail/detail.aspx?QueryID=6&CurRec=6&recid=&FileName=1012002274.nh&DbName=CMFD2012&DbCode=CMFD&yx=&pr=&URLID=
    [15] 祖士明.玄武岩及Kevlar纤维填充式防护结构超高速撞击性能研究[D].哈尔滨: 哈尔滨工业大学, 2013. http://kns.cnki.net/kns/detail/detail.aspx?QueryID=9&CurRec=3&recid=&FileName=1014002506.nh&DbName=CMFD201401&DbCode=CMFD&yx=&pr=&URLID=

    ZU S M.The optimal structural design of stuffed shields whit basalt and Kevlar fiber clothes on hypervelocity impact[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese). http://kns.cnki.net/kns/detail/detail.aspx?QueryID=9&CurRec=3&recid=&FileName=1014002506.nh&DbName=CMFD201401&DbCode=CMFD&yx=&pr=&URLID=
    [16] CHRISTIANSEN E L, KERR J H.Ballistic limit equations for spacecraft shielding[J]. International Journal of Impact Engineering, 2001, 26(1-10):93-104. doi: 10.1016/S0734-743X(01)00070-7
    [17] http://archive.ics.uci.edu/ml/datasets/Ionosphere/[DB]. 1989-01-01.
    [18] 苏锑, 杨明, 王春香, 等.一种基于分类回归树的无人车汇流决策方法[J].自动化学报, 2018, 44(1):35-43. http://d.old.wanfangdata.com.cn/Periodical/zdhxb201801004

    SU T, YANG M, WANG C X, et al.Classification and regression tree based traffic merging for method self-driving vehicles[J]. Acta Automatica Sinica, 2018, 44(1):35-43(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdhxb201801004
    [19] 李海生.基于证据理论的分类方法研究[D].广州: 华南理工大学, 2013.

    LI H S.Research of classification method based on evidence theory[D]. Guangzhou: South China University of Technology, 2013(in Chinese).
    [20] 傅翔.玄武岩纤维布/铝丝网组合材料的空间碎片防护结构研究[D].哈尔滨: 哈尔滨工业大学, 2011. http://kns.cnki.net/kns/detail/detail.aspx?QueryID=16&CurRec=2&recid=&FileName=1012002329.nh&DbName=CMFD2012&DbCode=CMFD&yx=&pr=&URLID=

    FU X.Hypervelocity impact characteristics investigation on the spacecraft space debris shield configuration of the basalt fiber woven/Al-mesh combination protective structure[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese). http://kns.cnki.net/kns/detail/detail.aspx?QueryID=16&CurRec=2&recid=&FileName=1012002329.nh&DbName=CMFD2012&DbCode=CMFD&yx=&pr=&URLID=
    [21] 贾古寨.玄武岩布防护机理及其填充防护结构撞击极限分析[D].哈尔滨: 哈尔滨工业大学, 2014. http://kns.cnki.net/kns/detail/detail.aspx?QueryID=18&CurRec=2&recid=&FileName=1014082964.nh&DbName=CMFD201501&DbCode=CMFD&yx=&pr=&URLID=

    JIA G Z.Analysis on protection mechanism of basalt fabric and the limit of its stuffed shielding structure[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese). http://kns.cnki.net/kns/detail/detail.aspx?QueryID=18&CurRec=2&recid=&FileName=1014082964.nh&DbName=CMFD201501&DbCode=CMFD&yx=&pr=&URLID=
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  63
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-18
  • 录用日期:  2018-05-25
  • 网络出版日期:  2019-01-20

目录

    /

    返回文章
    返回
    常见问答