留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性高速飞行器的状态/参数滚动时域估计

陈尔康 荆武兴 高长生

陈尔康, 荆武兴, 高长生等 . 弹性高速飞行器的状态/参数滚动时域估计[J]. 北京航空航天大学学报, 2019, 45(2): 291-298. doi: 10.13700/j.bh.1001-5965.2018.0273
引用本文: 陈尔康, 荆武兴, 高长生等 . 弹性高速飞行器的状态/参数滚动时域估计[J]. 北京航空航天大学学报, 2019, 45(2): 291-298. doi: 10.13700/j.bh.1001-5965.2018.0273
CHEN Erkang, JING Wuxing, GAO Changshenget al. State/parameter moving horizon estimation for elastic hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 291-298. doi: 10.13700/j.bh.1001-5965.2018.0273(in Chinese)
Citation: CHEN Erkang, JING Wuxing, GAO Changshenget al. State/parameter moving horizon estimation for elastic hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 291-298. doi: 10.13700/j.bh.1001-5965.2018.0273(in Chinese)

弹性高速飞行器的状态/参数滚动时域估计

doi: 10.13700/j.bh.1001-5965.2018.0273
基金项目: 

国家自然科学基金 11572097

详细信息
    作者简介:

    陈尔康  男, 博士研究生。主要研究方向:飞行器动力学与控制

    荆武兴  男, 博士, 教授, 博士生导师。主要研究方向:飞行器动力学与控制

    通讯作者:

    荆武兴, E-mail: jingwuxing@hit.edu.cn

  • 中图分类号: V249.3;TN713

State/parameter moving horizon estimation for elastic hypersonic vehicles

Funds: 

National Natural Science Foundation of China 11572097

More Information
  • 摘要:

    针对弹性高速飞行器非线性、不确定性和刚体/弹性耦合的特点,提出了一种基于QR分解和滚动时域估计的状态/参数联合估计方法。首先,通过引入滚动时域策略,将状态/参数估计问题转化为固定变量数目的优化问题,能够较好地处理时变参数的估计问题。然后,利用前向动态规划原理,将到达代价的计算转化为最小二乘问题,并利用QR分解进行求解,从而给出了基于QR分解的到达代价更新方法。这样使得整个滚动时域估计方法都建立在优化的基础上,且引入了反馈机制,提高了估计精度和速度。仿真结果表明:滚动时域估计的精度明显优于扩展卡尔曼滤波,且基于QR分解的到达代价更新方法在速度上优于传统的基于估计误差协方差的到达代价更新方法。

     

  • 图 1  输入信号

    Figure 1.  Input signal

    图 2  EKF、MHE-EKF和MHE-QR方法估计结果的均方根误差

    Figure 2.  RMSE of estimation results of EKF, MHE-EKF and MHE-QR methods

    图 3  不同方案时MHE-QR方法估计结果的均方根误差

    Figure 3.  RMSE of estimation results of different schemes using MHE-QR method

    表  1  不同方法估计结果的均方根误差均值

    Table  1.   Average RMSE mean values of estimation results of different methods

    方法 RMSE
    / (10-3(°)) ωz/(10-3(°)· s-1) η1 1 ω1/ (rad·s-1)
    MHE-QR1 0.536 3.4 0.037 7 0.15 0.87
    MHE-QR2 0.472 3.3 0.029 6 0.097 0.62
    MHE-EKF 0.548 3.4 0.039 0 0.17 0.90
    EKF 1.2 5.2 0.088 3 0.47 2.86
    MHE-S 3.2 5.7 0.39 1.41
    EKF-S 3.5 7.0 0.37 2.47
    下载: 导出CSV

    表  2  不同方法的计算耗时

    Table  2.   Run time of different methods

    方法 平均时间/(10-2 s) 最大时间/(10-2 s)
    MHE-QR1 2.44 4.74
    MHE-QR2 2.35 4.78
    MHE-EKF 2.48 7.56
    EKF 0.66 1.27
    下载: 导出CSV
  • [1] 张超凡, 宗群, 董琦, 等.高超声速飞行器模型及控制若干问题综述[J].信息与控制, 2017, 46(1):90-102. http://d.old.wanfangdata.com.cn/Periodical/xxykz201701014

    ZHANG C F, ZONG Q, DONG Q, et al.A survey of models and control problems of hypersonic vehicles[J].Information and Control, 2017, 46(1):90-102(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xxykz201701014
    [2] 张伸, 王青, 董朝阳, 等.基于跟踪微分器的高超声速飞行器减步控制[J].北京航空航天大学学报, 2017, 43(10):2054-2062. http://bhxb.buaa.edu.cn/CN/abstract/abstract14202.shtml

    ZHANG S, WANG Q, DONG C Y, et al.Reduced step control of hypersonic vehicle based on tracking differentiator[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10):2054-2062(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14202.shtml
    [3] 赵贺伟, 杨秀霞, 沈如松, 等.弹性高超声速飞行器预设性能精细姿态控制[J].兵工学报, 2017, 38(3):501-511. doi: 10.3969/j.issn.1000-1093.2017.03.012

    ZHAO H W, YANG X X, SHEN R S, et al.Prescribed perfor-mance fine attitude control for aeroelastic hypersonic vehicle[J].Acta Armamentarii, 2017, 38(3):501-511(in Chinese). doi: 10.3969/j.issn.1000-1093.2017.03.012
    [4] 吴云洁, 宋嘉赟, 刘晓东, 等.推力矢量防空导弹伺服弹性的抑制[J].北京航空航天大学学报, 2013, 39(11):1480-1485. http://bhxb.buaa.edu.cn/CN/abstract/abstract12775.shtml

    WU Y J, SONG J Y, LIU X D, et al.Suppression of aeroservoelasticity in anti-aircraft missile using thrust vector[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11):1480-1485(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12775.shtml
    [5] ABDOLLAHPOURI M, TAKACS G, ROHAL-ILKIV B.Real-time moving horizon estimation for a vibrating active cantilever[J].Mechanical Systems and Signal Processing, 2017, 86(A):1-15. http://www.sciencedirect.com/science/article/pii/S0888327016303636
    [6] 焦志强, 李卫华, 王鹏.基于多模型与滚动时域估计的机动目标跟踪算法[J].空军工程大学学报(自然科学版), 2016, 17(2):15-20. doi: 10.3969/j.issn.1009-3516.2016.02.004

    JIAO Z Q, LI W H, WANG P.A multi-model method of tracking maneuvering target based on multiple model and moving horizon estimation[J].Journal of Air Force Engineering University(Natural Science Edition), 2016, 17(2):15-20(in Chinese). doi: 10.3969/j.issn.1009-3516.2016.02.004
    [7] RAO C V, RAWLINGS J B, LEE J H.Constrained linear state estimation-A moving horizon approach[J].Automatica, 2001, 37(10):1619-1628. doi: 10.1016/S0005-1098(01)00115-7
    [8] 陈伟, 孙传杰, 冯高鹏, 等.基于滚动时域优化的旋转弹解耦控制器设计[J].北京航空航天大学学报, 2018, 44(4):717-724. http://bhxb.buaa.edu.cn/CN/abstract/abstract14453.shtml

    CHEN W, SUN C J, FENG G P, et al.Design of decoupling controller for spinning missile based on receding horizon optimal[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4):717-724(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14453.shtml
    [9] RAO C V, RAWLINGS J B, MAYNE D Q.Constrained state estimation for nonlinear discrete-time systems:Stability and moving horizon approximations[J].IEEE Transactions on Automa-tic Control, 2003, 48(2):246-258. doi: 10.1109/TAC.2002.808470
    [10] KUHL P, DIEHL M, KRAUS T, et al.A real-time algorithm for moving horizon state and parameter estimation[J].Computers and Chemical Engineering, 2011, 35(1):71-83. doi: 10.1016-j.compchemeng.2010.07.012/
    [11] VAN DER STEEN J, DIEHL M, AERTS C, et al.Spacecraft attitude estimation and sensor calibration using moving horizon estimation[J].Journal of Guidance, Control, and Dynamics, 2013, 36(3):734-742. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230557987/
    [12] LIU A D, ZHANG W A, CHEN Z Q, et al.Moving horizon estimation for mobile robots with multirate sampling[J].IEEE Transactions on Industrial Electronics, 2017, 64(2):1457-1467. doi: 10.1109/TIE.2016.2611458
    [13] 焦志强, 李卫华, 王鹏.基于量测补偿的多传感器分布式滚动时域估计[J].系统工程与电子技术, 2017, 39(5):984-990. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201705005

    JIAO Z Q, LI W H, WANG P.Distributed moving horizon estimation for multi-sensors system based on measurements compensation[J].System Engineering and Electronics, 2017, 39(5):984-990(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201705005
    [14] GAO W, YANG J, LIU J, et al.Moving horizon estimation for cooperative localization with communication delay[J].The Journal of Navigation, 2015, 68(3):493-510. http://journals.cambridge.org/abstract_S037346331400085X
    [15] 赵国荣, 黄婧丽, 苏艳琴, 等.基于滚动时域估计的飞行器姿态估计及三轴磁强计在线校正[J].物理学报, 2015, 64(21):210502. doi: 10.7498/aps.64.210502

    ZHAO G R, HUANG J L, SU Y Q, et al.Attitude estimation and three-axis magnetometer on-line calibration based on moving horizon estimation[J].Acta Physica Sinica, 2015, 64(21):210502(in Chinese). doi: 10.7498/aps.64.210502
    [16] QU C C, HAHN J.Computation of arrival cost for moving horizon estimation via unscented Kalman filtering[J].Journal of Process Control, 2009, 19(2):358-363. doi: 10.1016/j.jprocont.2008.04.005
    [17] 孟中杰, 闫杰.高超声速弹性飞行器振动模态自适应抑制技术[J].宇航学报, 2011, 32(10):2164-2168. doi: 10.3873/j.issn.1000-1328.2011.10.011

    MENG Z J, YAN J.Adaptive modal suppression for hypersonic aeroelastic vehicler[J].Journal of Astronautics, 2011, 32(10):2164-2168(in Chinese). doi: 10.3873/j.issn.1000-1328.2011.10.011
    [18] FIORENTINI L, SERRANI A, BOLENDER M A, et al.Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J].Journal of Guidance, Control, and Dynamics, 2009, 32(2):401-416. doi: 10.2514/1.39210
    [19] SANCHEZ Z, MURILLO M, GIOVANINI L.Adaptive arrival cost update for improving moving horizon estimation performance[J].ISA Transactions, 2017, 68:54-62. doi: 10.1016/j.isatra.2017.02.012
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  56
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-15
  • 录用日期:  2018-07-28
  • 网络出版日期:  2019-02-20

目录

    /

    返回文章
    返回
    常见问答