留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子交换炉温度场均匀性分析与优化

伏娜 张晞

伏娜, 张晞. 质子交换炉温度场均匀性分析与优化[J]. 北京航空航天大学学报, 2019, 45(4): 735-742. doi: 10.13700/j.bh.1001-5965.2018.0350
引用本文: 伏娜, 张晞. 质子交换炉温度场均匀性分析与优化[J]. 北京航空航天大学学报, 2019, 45(4): 735-742. doi: 10.13700/j.bh.1001-5965.2018.0350
FU Na, ZHANG Xi. Analysis and optimization of temperature field uniformity of proton exchange furnace[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 735-742. doi: 10.13700/j.bh.1001-5965.2018.0350(in Chinese)
Citation: FU Na, ZHANG Xi. Analysis and optimization of temperature field uniformity of proton exchange furnace[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 735-742. doi: 10.13700/j.bh.1001-5965.2018.0350(in Chinese)

质子交换炉温度场均匀性分析与优化

doi: 10.13700/j.bh.1001-5965.2018.0350
详细信息
    作者简介:

    伏娜   女, 硕士研究生。主要研究方向:铌酸锂光波导制备技术、系统建模与仿真

    张晞   女, 博士, 高级工程师。主要研究方向:光纤传感、信号处理等

    通讯作者:

    张晞, E-mail: zhangxi@buaa.edu.cn

  • 中图分类号: TK175

Analysis and optimization of temperature field uniformity of proton exchange furnace

More Information
  • 摘要:

    针对质子交换炉的温度场均匀性问题,结合质子交换炉的结构特点,基于FLUENT用户自定义函数(UDF)开发了质子交换炉炉温控制算法,并在此基础上提出了多种加热控温方案;利用FLUENT软件对不同方案下的质子交换炉温度场进行仿真,分析不同控温方式下炉内温度场均匀性与传感器位置布置、加热丝布置高度的关系,找到最佳方案。结果表明:采用三段控温、3个传感器位置分别布置在3段加热丝中间、加热丝布置高度4倍于均匀温区长度时炉内温度场均匀性最好,均匀温区内最大偏差为0.03℃;对于既定结构的立式炉体,增加加热丝布置高度、优化设计传感器布置方案和炉体控温方式可以提高温度场均匀性。该方法为同类电加热炉温度场均匀性的优化设计提供了思路。

     

  • 图 1  质子交换炉系统实际模型

    Figure 1.  Practical model of proton exchange furnace system

    图 2  3种控温方式的传感器位置布置

    Figure 2.  Sensor position arrangement of three kinds of temperature control methods

    图 3  整段控温时传感器位置对质子交换炉均匀性的影响

    Figure 3.  Effect of sensor position on uniformity of proton exchange furnace under only one temperature controller

    图 4  两段控温时传感器位置对质子交换炉均匀性的影响

    Figure 4.  Effect of sensor position on uniformity of proton exchange furnace under two temperature controllers

    图 5  三段控温时传感器位置对质子交换炉均匀性的影响

    Figure 5.  Effect of sensor position on uniformity of proton exchange furnace under three temperature controllers

    图 6  方案18、方案12、方案3的y=0截面的温度分布云图

    Figure 6.  Temperature distribution contour of y=0 cross-section for Scheme 18, Scheme 12 and Scheme 3

    表  1  边界条件的设置

    Table  1.   Boundary condition setting

    边界名称 边界类型 边界条件 参数
    炉顶 壁面 对流 传热系数=10W/(m2·K)自由流体温度为300K
    炉壁 壁面 热流量 没有加热丝覆盖的壁面:热流量=0;有加热丝覆盖的壁面:热流量=UDF flux
    炉底 壁面 热流量 热流量=0
    下载: 导出CSV

    表  2  18种设计方案

    Table  2.   18 kinds of design schemes

    序号 控温方式 传感器位置布置 加热丝布置高度/m
    1 整段控温 z=0 h=2Δh=0.4
    2 h=3Δh=0.6
    3 h=4Δh=0.8
    4 z=0.2m h=2Δh=0.4
    5 h=3Δh=0.6
    6 h=4Δh=0.8
    7 两段控温 组合方式1 h=2Δh=0.4
    8 h=3Δh=0.6
    9 h=4Δh=0.8
    10 组合方式2 h=2Δh=0.4
    11 h=3Δh=0.6
    12 h=4Δh=0.8
    13 三段控温 组合方式1 h=2Δh=0.4
    14 h=3Δh=0.6
    15 h=4Δh=0.8
    16 组合方式2 h=2Δh=0.4
    17 h=3Δh=0.6
    18 h=4Δh=0.8
    下载: 导出CSV

    表  3  3种控温方式下的最佳方案对比

    Table  3.   Comparison of the best solutions under three temperature control methods

    序号 最佳方案 最大偏差ΔTmax/℃
    3 整段控温,传感器位置布置在z=0,加热丝布置高度h=4Δh 1.73
    12 两段控温,传感器位置布置组合方式2,加热丝布置高度h=4Δh 0.95
    18 三段控温,传感器位置布置组合方式2,加热丝布置高度h=4Δh 0.03
    下载: 导出CSV
  • [1] FAKHRI M A, AL-DOURI Y, HASHIM U, et al.Optical investigation of nanophotonic lithium niobate-based optical waveguide[J].Applied Physics B, 2015, 121(1):107-116. doi: 10.1007/s00340-015-6206-x
    [2] CAO L, ABOKETAF A, WANG Z H, et al.Hybrid amorphous silicon(a-Si:H)-LiNbO3 electro-optic modulator[J].Optics Communications, 2014, 330:40-44. doi: 10.1016/j.optcom.2014.05.021
    [3] FAKHRI M A, AL-DOURI Y, HASHIM U, et al.Annealing temperature effects on morphological and optical studies of nano and micro photonics lithium niobate using for optical waveguide applications[J].Australian Journal of Basic & Applied Sciences, 2015, 9(12):128-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8ec99da3-de94-48c8-ba62-8d5d41c7af2b
    [4] SHEN L, HE J J, YANG C H, et al.Temperature uniformity control of large-scale vertical quench furnaces for aluminum alloy thermal treatment[J].IEEE Transactions on Control Systems Technology, 2015, 24(1):24-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5919295987cd122ec120cb60ed4bcad
    [5] EMADI A, SABOONCHI A, TAHERI M, et al.Heating characteristics of billet in a walking hearth type reheating furnace[J].Applied Thermal Engineering, 2014, 63(1):396-405. doi: 10.1016/j.applthermaleng.2013.11.003
    [6] LING Z, CHEN J, FANG X, et al.Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J].Applied Energy, 2014, 121:104-113. doi: 10.1016/j.apenergy.2014.01.075
    [7] PANG L, WANG M, WANG W, et al.Optimal thermal design of a stacked mini-channel heat sink cooled by a low flow rate coolant[J].Entropy, 2013, 15(11):4716-4731. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c495d6c38835bc326683c2d3acccfe16
    [8] 唐家鹏.ANSYS FLUENT 16.0超级学习手册[M].北京:人民邮电出版社, 2016:502-507.

    TANG J P.ANSYS FLUENT 16.0 super study manual[M].Beijing:People's Posts and Telecommunications Press, 2016:502-507(in Chinese).
    [9] CHICATELLI A, HARTLEY T T, COLE G, et al.Interdisciplinary modeling using computational fluid dynamics and control theory[C]//American Control Conference.Piscataway, NJ: IEEE Press, 1994, 3: 3438-3443.
    [10] YANG Y, REUTER M A, HARMAN D T M.CFD modelling for control of hazardous waste incinerator[J].Control Engineering Practice, 2003, 11(1):93-101. http://cn.bing.com/academic/profile?id=5f690df21c8c3996f7012fc132f3ce9f&encoded=0&v=paper_preview&mkt=zh-cn
    [11] GAO X J, WANG S Y, WANG P.The evaluation method of PID controller parameter tuning based on FLUENT[C]//Control and Decision Conference.Piscataway, NJ: IEEE Press, 2015: 4850-4854. https://ieeexplore.ieee.org/document/7162784
    [12] 李友荣, 吴双应, 石万元, 等.传热分析与计算[M].北京:中国电力出版社, 2013:3-15.

    LI Y R, WU S Y, SHI W Y, et al.Heat transfer analysis and calculation[M].Beijing:China Electric Power Press, 2013:3-15(in Chinese).
    [13] 王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社, 2004:7-11.

    WANG F J.Computational fluid dynamics analysis:Principles and applications of CFD software[M].Beijing:Tsinghua University Press, 2004:7-11(in Chinese).
    [14] 朱能伟, 方晓东.基于FLUENT的准分子激光器气体流场数值仿真[J].中国激光, 2016, 43(9):44-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201609007

    ZHU N W, FANG X D.Numerical simulation of gas flow field in excimer laser based on FLUENT[J].Chinese Laser, 2016, 43(9):44-49(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201609007
    [15] 胡坤, 李振北.ANSYS ICEM CFD工程实例详解[M].北京:人民邮电出版社, 2014:34-39.

    HU K, LI Z B.Detailed explanation of ANSYS ICEM CFD project[M].Beijing:People's Posts and Telecommunications Press, 2014:34-39(in Chinese).
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  594
  • HTML全文浏览量:  95
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-11
  • 录用日期:  2018-11-30
  • 网络出版日期:  2019-04-20

目录

    /

    返回文章
    返回
    常见问答